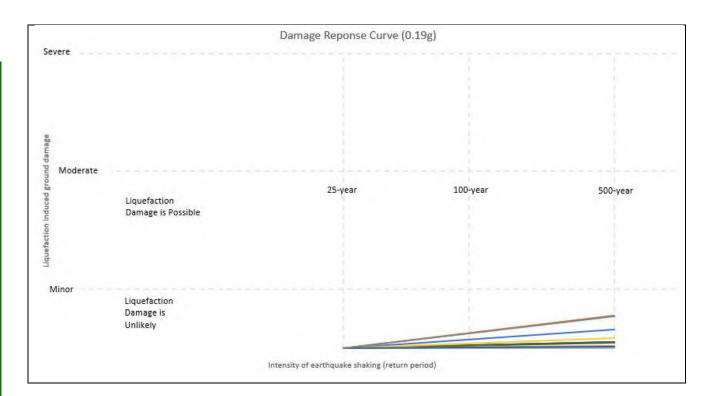


recorded)

January 2023

Table 5 - Summary of results

Test data	Liquefiable Zone (mbgl) – 0.13g, Mw 5.8	Estimated total vertical free field settlement (mm) – ULS^	Liquefaction Severity Number (LSN) – ULS^*	Liquefaction Potential Index
CPT01	n/a	<5 (11)	<1 (3)	Low Risk
CPT02	n/a	<5	<1	Low Risk
CPT03	n/a	<5	<1 (1)	Low Risk
CPT04	n/a	<5	<1 (1)	Low Risk
CPT05	9.0 - 10.0	15 (53)	<1 (1)	Low Risk
CPT06	n/a	<5	<1	Low Risk
CPT07	n/a	<5	<1	Low Risk
CPT08	n/a	<5	<1	Low Risk
CPT09	n/a	<5	<1	Low Risk
CPT10	n/a	<5	<1 (1.8)	Low Risk
CPT11	n/a	<5	<1	Low Risk
CPT12	n/a	<5	<1	Low Risk
CPT13	10.0-10.5	17 (68)	1.1 (5.6)	Low Risk
CPT14	4.0-4.2 9.0-9.5	20 (57)	1.4 (5.4)	Low Risk
CPT01WM	n/a	<5	<1 (1.5)	Low Risk
CPT02WM	n/a	<5	<1 (2.6)	Low Risk
CPT03WM	n/a	<5	<1 (4.0)	Low Risk
CPT04WM	n/a	<5	<1	Low Risk
CPT05WM	6.0-6.5	<5 (10)	<1 (4.3)	Low Risk
CPT06WM	n/a	<5	<1 (2.5)	Low Risk
CPT07WM	5.1-5.8	7 (15)	1.1 (2.3)	Low Risk
CPT08WM	6.2-6.4	7 (35)	1.7 (9.7)	Low Risk
^ Val	ues given in parenthesis rep	present PGA = 0.19g,	Mw = 6.5. (Only cha	anges in behaviour are


22 189

Values less than 10 indicate 'Little to no expression of liquefaction'

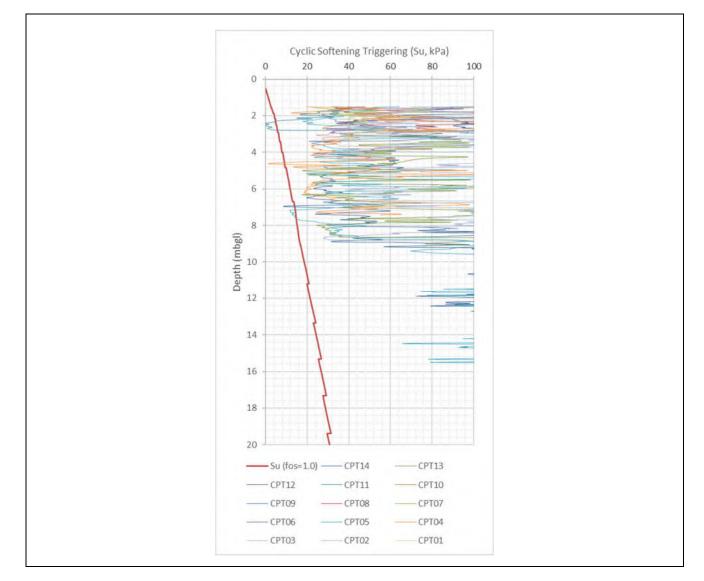
22 189_preliminary geotechnical investigation report https://haighworkman2020.sharepoint.com/sites/suitefiles/shared documents/clients/peter swan

limited/jobs/22 189 - kahikatearoa lane, waipapa (lot 1 dp 178287)/engineering/pgar/22 189_preliminary geotechnical investigation report.docx

Based on our assessment we consider liquefaction induced ground damage is less than minor and liquefaction damage is unlikely based on 'Planning and engineering guidance for potentially liquefaction-prone land, MBIE, September 2017). Based on the assessment, we consider the effects from excess pore pressure and liquefaction to be between insignificant (L0) to moderate (L2) in accordance with Table 5.1 (Module 3), with relatively small differential settlements across the site due to limited excess pore water pressures. The free field settlement within the paleochannel is higher than the remainder of the site for the lower bound PGA = 0.19 g case and the structural designer should consider the ground deformation to ensure the structure can tolerate deflection under the design earthquake limit state.

4.8.1 *Other Considerations*

Cyclic softening is another seismically induced phenomenon that may occur at the site considering the underlying soft to firm cohesive alluvial silts and clays. An assessment of cyclic softening triggering was undertaken by Haigh Workman using the CPT data and the methods presented by Idriss and Boulanger (2008), with the magnitude scaling factor (MSF) adjusted accordingly for the fine-grained soils.


Based on the results, thin lenses of soil are expected to exhibit cycling softening under the lower bound ULS earthquake event (0.19 g, Mw = 6.5). The thin lenses that exhibit cyclic softening will result in some minor settlement but not have an adverse effect on the building or the overall bearing capacity of the site, refer Figure 4.

22 189

Preliminary Geotechnical Appraisal Report Proposed Industrial Development Lots 6-8 Kahikatearoa Lane Extension, Waipapa Peter Swan Limited

January 2023

Figure 4 - Cyclic softening triggering

5 Foundation Recommendations

5.1 General

Concept drawings prepared by Peter Swan Limited indicates a single storey warehouse with approximately 6000 m² floor area with dry storage, chiller, and cold storage areas (Option B). A drive-through canopy is shown on the western side of the building, with a sealed heavy vehicle accessway around the Lots and concrete yards. The land surrounding the warehouse will comprise a sealed off yard for carparking and heavy vehicle manoeuvring, with a specific area for wastewater disposal. A uniformly distributed floor slab loading of 20 kPa has been provided by the Client.

22 189

Based on the need to raise the building platform out of the flood hazard and the resultant settlement, particularly across the paleochannel area, we consider shallow foundations are more appropriate for this site due to potential down drag on the piles from the filling, and gaps forming beneath slab due to consolidation settlement occurring over a long time, e.g., a fully suspended floor slab will be required.

5.2 Shallow Foundations

The subsoils comprised fine-grained alluvial soils, moderately susceptible to seasonal shrink-swell behaviour. The site is located within/near a flood hazard zone and minor earthworks are required to raise to provide an FFL of 78.9 mRL. Consolidation settlement has been analysed based slab on grade construction with a uniformly distributed load of 20 kPa and raising the site prior to building. Based on the ground conditions, we consider concrete slab on grade foundations will be appropriate provided the site is subject to a monitored settlement preload.

If a raft foundation type is adopted, we recommend that the upper 300 mm across the site is removed and reinstated with granular hardfill, with a geotextile and geogrid (minimum 40 kN) placed at the interface of the soil and granular hardfill.

For conventional spread foundation design, we recommend embedment for spread footings be 600 mm below finished ground level. The soils are variable across the site and adopting conventional spread foundations may encounter unsuitable ground conditions and high groundwater level. We recommend the following maximum dimensions to support concentrated loads, with an ultimate bearing capacity of 200 kPa (geotechnical strength reduction factor of 0.5 for limit state design) available upon completion of the settlement preload:

- Pad Foundations = 1200 x 1200 mm
- Continuous strip footing width = 600 mm

Larger foundation area can be adopted to spread the load. However, this will result in the pressure bulb deepening, reducing the ultimate bearing capacity and will require a detailed settlement analysis to predict settlement under the given loading scenario. The parameters given in Table 3 and Figure 3 can be adopted for settlement analyses.

A preliminary consolidation settlement assessment has been undertaken based on the proposed building layout, assuming a permanent uniformly distributed load of 20 kPa across the building plan area. Based on the required filling and a 20 kPa uniformly distributed load, 150 mm differential settlement across the building is anticipated without preloading the site. The differential settlement can be mitigated if filling is undertaken in advance (minimum 6 months and subject to an additional surcharge being applied). The settlement predictions are subject to change based on building and floor loadings, and the required final level of the site due to flood hazard. A settlement preload design will be required once the final building layout has been determined.

Confirmation of the stripped subgrade is recommended prior to preparing foundations to ensure all unsuitable material, e.g., topsoil or non-certified fill, has been removed. Where filling is required, compaction testing will be required to confirm the hardfill has been compacted to an engineered standard.

- Ultimate bearing capacity of 200kPa (based on the limiting foundation sizes as detailed within Section 5.2 and settlement preload being undertaken in advance).
- Geotechnical strength reduction factor 0.5.
- Soil expansivity class Site Class M (moderately reactive soils).
- Seismic class Site Class D (deep or soft soil site).

Bearing capacity values included in this report are for vertical loads only and do not consider horizontal shear or moment.

Where foundation excavations expose soft/weak or otherwise unsuitable ground these materials should be undercut and replaced with GAP40 compacted to an engineered standard.

6 Construction

6.1 Earthworks Operation and Compaction Control

We have not yet been supplied with any drawings showing the likely scope of earthworks associated with the development, however, given the size of the warehouse building (proposed and future) and the large canopy, we anticipate that earthworks will be required to create a level building platform and to raise the site above the flood level, we have assumed approximately 800 mm for our assessments. Prior to the placement of any filling, it will be necessary to strip all topsoil.

All filling across the site should be done at the same time, including the future warehouses along the southern boundary of the Lot. A typical construction sequence is as follows:

- Strip the site of topsoil [Subgrade check by Geotechnical Engineer]
- Geotextile BIDIM A39 across the subgrade prior to filling (install min. 40 kN geogrid, e.g., CombiGrid[®])
- Settlement monitoring pins to be added across the building platform.
- Import fill and start running in layer (200 mm loose for granular fill). Building platforms to be done first and overfilled a minimum 2.0 m from all edges of building. Fill up to FFL level.
- Surcharge the building platforms with fill to replicate the proposed building loads and other additional surcharge required to speed up the settlement i.e., decrease the time for settlement to occur. Settlement to be monitored. [Subject to settlement preload design and reporting]

• Once approved by the Engineer, surcharge fill can be removed and spread over other areas of the site to achieve the desired levels.

6.2 Earthworks

6.2.1 *Subgrade Preparation*

Due to the soil sensitivity at the site, site concrete or gravel surface protection is recommended under all perimeter or pad footings to provide a suitable working base when preparing foundations, this is particularly important if preparing foundations in wet weather or during winter, or during summer where exposure to the sun and heat will result in the soils becoming desiccated. Slab preparation should also be protected by granular

6.2.2 Filling

The site can be raised with granular fill, subject to approval by the Engineer and preload monitoring. Our recommended control criteria are as follows:

	Dy Density Percentage of N.Z. Standard Compaction Test	Water Content Allow variations from Optimum
GAP65/GAP40	95%	6% to 8%

Table 6 - Maximum dry density for granular fill

Table 7 - Clegg Impact Value (CIV) testing on granular fill

Clegg Impact Value – 4.5kg Clegg	
Average value	25
Maximum single value	20

Note: Average value shall be determined over ten consecutive tests.

Table 8 - Proof roll testing on granular hardfill

Proof rolling observations	
Target elastic settlement beneath a fully loaded six-wheel truck or 10 tonne smooth drum roller	<5 mm

All filling shall be compacted in thin layers, approximately 200 mm loose, with compaction testing completed at every second layer by a CPEng (Geotechnical).

6.2.3 *Groundwater Control*

Groundwater level across the site is shallow and service installation will need to be aware of this during construction. The site will need to be built up as part of the site preparation and should be done well in advance of preparing the site for service installation. Where possible, all services should be installed during summer.

6.3 Subgrade Protection

We recommend that trafficking of the building platform and carparking areas are minimised and that subgrades are only trimmed to final levels immediately prior to covering with granular hardfill. The site should be shaped to avoid water ponding during rain, thereby limiting the need for additional undercutting and hard filling. Areas of trimmed subgrade shall not be left exposed to allow the ingress of water, nor should subgrade areas be trafficked prior to drying out after rain.

6.4 Stormwater Disposal

Stormwater from paved areas, roofs, driveways, and water storage tanks should be collected in sealed, flexible pipes and discharged in such a manner to not cause any instability or erosion. It is essential for the long-term stability of this site, that all storm water be piped away from any proposed building platform to avoid over saturation of the underlying natural soils.

Stormwater shall be piped away from any proposed building platform to avoid over saturation of the subsoils and to maintain stability across the site. All stormwater overflow drainages should be channelled away from the development platform and discharged in a controlled manner.

Uncontrolled stormwater discharges onto the ground surface can cause erosion and should not be permitted under any circumstances where stability could be compromised.

6.5 Services

At the time of writing, no known underground services cross beneath the proposed development area. Where it is intended for the installation of underground services, we recommend that all services are installed prior to foundation excavations and construction and that all services are designed to be outside the influence of foundation excavations. We recommend that any new services are accurately located on site and the depth to invert be determined prior to the commencement of foundation excavations.

6.6 Pavement Design

Scala penetrometer testing was undertaken across the site from the surface to determine an indicative CBR% for pavement design. Based on the in-situ test results, we recommend a design CBR of 2.0% should be adopted for concept pavement design purposes, with the inclusion of a geogrid and textile at the subgrade level. Localised soft zones are expected and will need to be undercut and removed during construction. Subsoil drainage is also recommended across the site due to the high groundwater level.

22 189

A minimum undrained shear strength of 50 kPa in the upper 1.0 m is required for pavement design. We recommend the pavement is reinforced with geogrid to confine the subbase material. A geotextile (BIDIM A29 or equivalent) should be installed between subgrade and pavement to minimise the ingress of fines into the pavement during dynamic loading.

6.7 Geotechnical Review

Haigh Workman Limited have only been provided with concept design drawings for the site. We therefore would like to be given the opportunity of reviewing the final civil and structural drawings for this development prior to Building Consent application to ensure that our recommendations relating to site works and foundation design have been interpreted as intended. Our involvement in the detailed design process is recommended.

6.8 Construction Observations

We consider the following specific items will need to be observed at the time of construction to ensure the foundation soils are consistent with the assumptions made in this geotechnical report:

- 1. Geotechnical drawing review to confirm the foundation design is as per the geotechnical recommendations.
- 2. Observe subgrade exposure prior to covering with hardfill protection.
- 3. Observe fill placement and confirmation fill has been placed to an engineered standard.
- 4. Review settlement monitoring results. Engineer to confirm removal of surcharge.
- 5. Observe all foundation excavations and exposure of foundation soils.
- 6. Observe pavement construction and testing at regular intervals.

Provision should be allowed for modifying the foundation solution at this time should unforeseen ground conditions be encountered.

7 Limitations

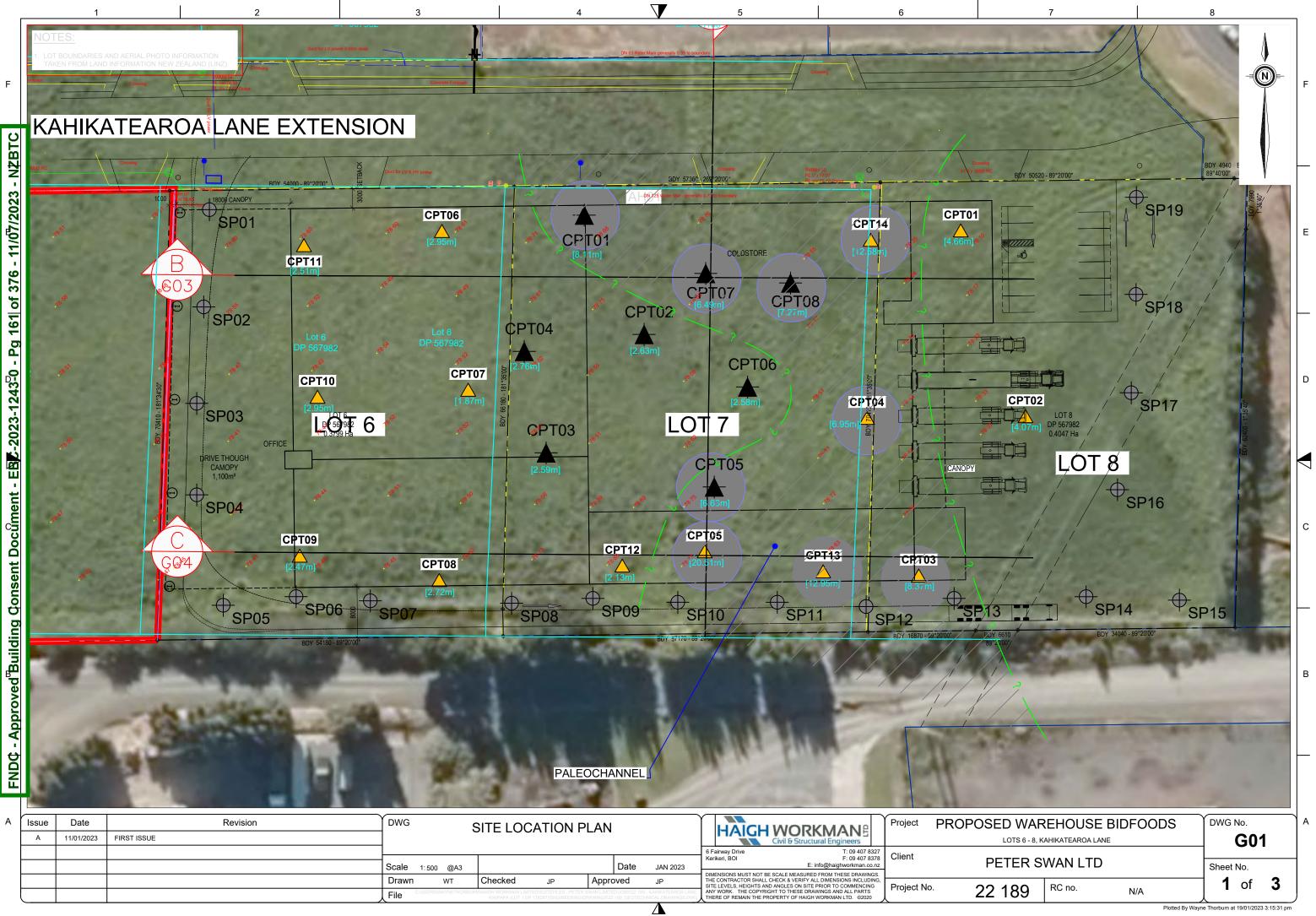
This report has been prepared for the use of Peter Swan Limited with respect to the brief outlined to us. This report is to be used by our Client and their Consultants and may be relied upon when considering geotechnical advice. Furthermore, this report may be utilised in the preparation of building and/or resource consent applications with local authorities. The information and opinions contained within this report shall not be used in other context for any other purpose without prior review and agreement by Haigh Workman Ltd.

The recommendations given in this report are based on site data from discrete locations. Inferences about the subsoil conditions away from the test locations have been made but cannot be guaranteed. We have inferred an appropriate geotechnical model that can be applied for our analyses. However, variations in ground conditions from those described in this report could exist across the site. Should conditions encountered differ

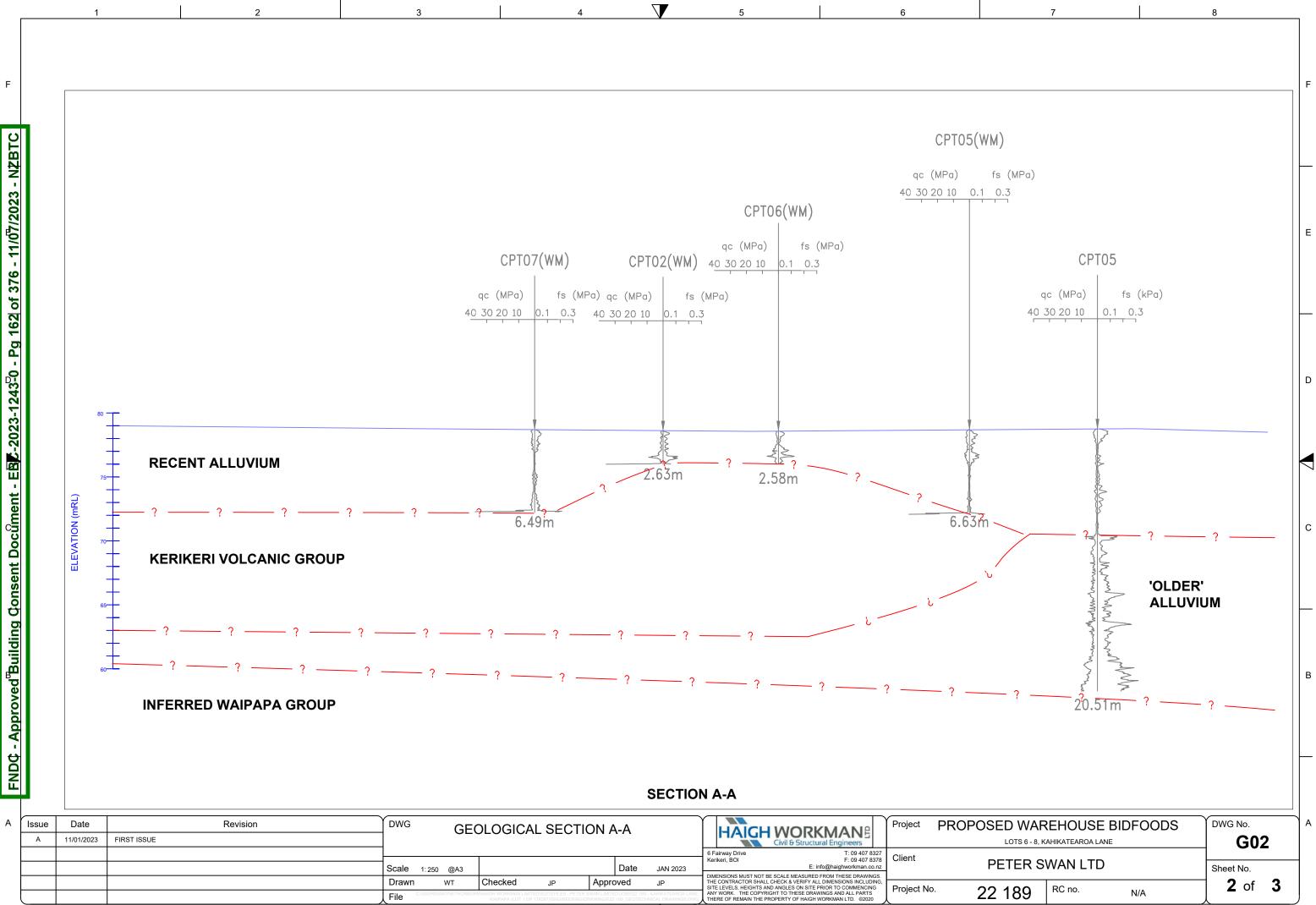
^{22 189}_preliminary geotechnical investigation reporthttps://haighworkman2020.sharepoint.com/sites/suitefiles/shared documents/clients/peter swan limited/jobs/22 189 - kahikatearoa lane, waipapa (lot 1 dp 178287)/engineering/pgar/22 189_preliminary geotechnical investigation report.docx

Preliminary Geotechnical Appraisal Report Proposed Industrial Development Lots 6-8 Kahikatearoa Lane Extension, Waipapa Peter Swan Limited

January 2023


to those outlined in this report we ask that we be given the opportunity to review the continued applicability of our recommendations.

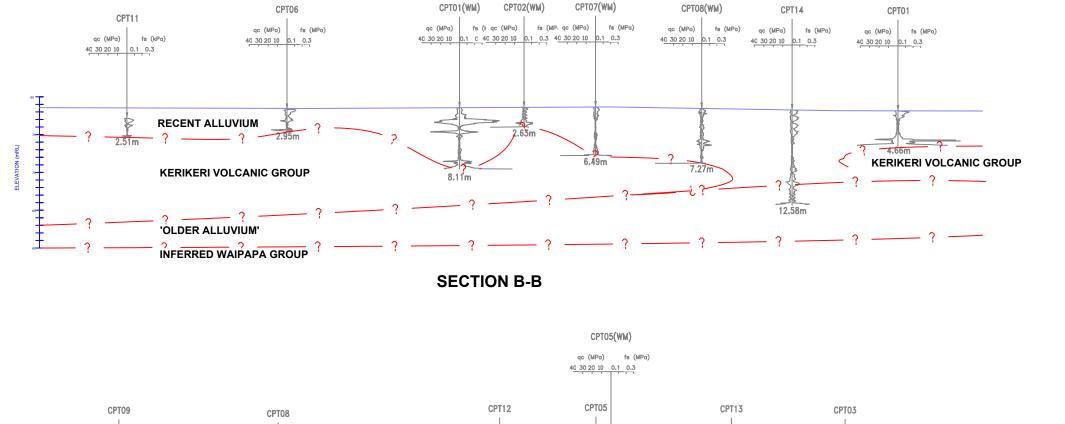
22 189

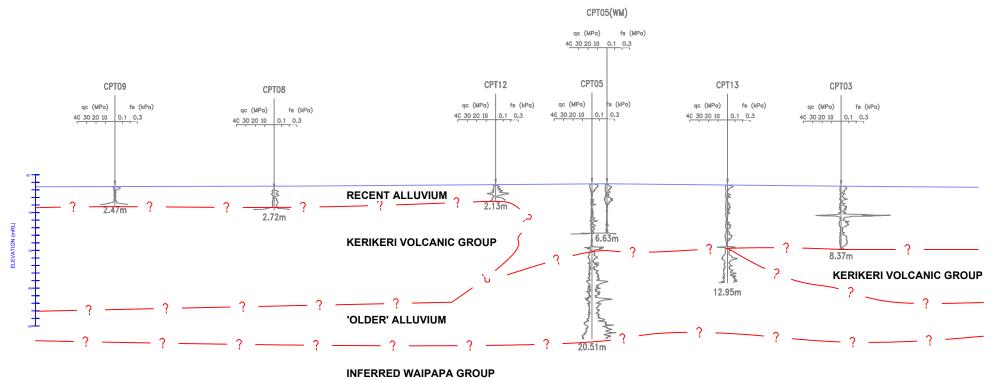


Appendix A – Drawings

Drawing No.	Title
22 189/G01	Site Investigation Plan
22 189/G02	Geological Section A-A
22 189/G03	Geological Section B-B and C-C

4	Issue	Date	Revision	DWG	ç	SITE LOC	ATION	PLAN	```		Project	PROPOSED
	А	11/01/2023	FIRST ISSUE							Civil & Structural Engineers		LC
						T				6 Fairway Drive T: 09 407 8 Kerikeri, BOI F: 09 407 8		DET
				Scale 1:	500 @A3			Date	JAN 2023	E: info@haighworkman.cc DIMENSIONS MUST NOT BE SCALE MEASURED FROM THESE DRAWIN		PET
				Drawn	WT	Checked	JP	Approved	JP	THE CONTRACTOR SHALL CHECK & VERIFY ALL DIMENSIONS INCLUDI SITE LEVELS, HEIGHTS AND ANGLES ON SITE PRIOR TO COMMENCING	NG,	
Į				File ^{Ciusi}	ERS\WAYNETHORBURI	N\HAIGH WORKMAN LIMIT WAIPAPA (LOT 1 DP	ED\SUITEFILES - PET 178287)\ENGINEERIN	TER SWAN LIMITED\JOBS\22 NG\DRAWINGS\22 189_GEOTI	189 - KAHIKATEAROA LANE ECHNICAL DRAWINGS.DWG	ANY WORK. THE COPYRIGHT TO THESE DRAWINGS AND ALL PARTS THERE OF REMAIN THE PROPERTY OF HAIGH WORKMAN LTD. ©2020	1 1	22.1


А	Issue	Date	Revision	DWG		GE	OLOGICA	A SEC		Α- Α		HAIGH WO	DRMANE	Project	PROPOSED
	А	11/01/2023	FIRST ISSUE			02	010010/	0_0		.,.		Civil 8	Structural Engineers		LO
										Ditt		6 Fairway Drive Kerikeri, BOI	T: 09 407 8327 F: 09 407 8378 E: info@haighworkman.co.nz	Client	PET
				-) @A3				Date	JAN 2023	DIMENSIONS MUST NOT BE SCALE ME	EASURED FROM THESE DRAWINGS.		
				Drawn	C:\USERS	WT		JP		DVED EDUJOBSV22 189 -	JP KAHIKATEAROA LANE,	THE CONTRACTOR SHALL CHECK & V SITE LEVELS, HEIGHTS AND ANGLES ANY WORK. THE COPYRIGHT TO THE	ON SITE PRIOR TO COMMENCING ESE DRAWINGS AND ALL PARTS	Project N	
				LFile			WAIPAPA (LOT 1 D	P 178287)\ENGINEEF	RING\DRAWINGS\2	2 189_GEOTECHI		THERE OF REMAIN THE PROPERTY O	F HAIGH WORKMAN LTD. ©2020		


Plotted By Wayne Thorburn at 19/01/2023 3:15:34 pm

1	2	3		5	6
	2	3	4	J	0

F

FND					SECTION C	-C					
A Iss	A 11/01/2023	Revision FIRST ISSUE	GEOLO	OGICAL SECTION B-E	3 & C-C		Project	PROPOSED WAI	REHOUSE BID KAHIKATEAROA LANE	DFOODS	DWG No. G03
			Scale 1: 500 @A3		Date JAN 2023	6 Fairway Drive T: 09 407 8327 Kerikeri, BOI F: 09 407 8378 E: info@haighworkman.co.nz DIMENSIONS MUST NOT BE SCALE MEASURED FROM THESE DRAWINGS.	Client	PETER S	SWAN LTD		Sheet No.
L			File C:USERSWAYNETHORBUI	Checked JP App RNIVAIGH WORKMAN LIMITEDISUITEFILES - PETER SWAN LIM WAIPAPA (LOT 1 DP 178287)ENGINEERINGIDRAWINGS	Droved JP IITEDIJOBS122 189 - KAHIKATEAROA LANE SI22 189_GEOTECHNICAL	THE CONTRACTOR SHALL CHECK & VERIFY ALL DIMENSIONS INCLUDING, STET LEVELS, HEIGHTS AND ANGLES ON SITE PROR TO COMMENCING ANY WORK. THE COPYRIGHT TO THESE DRAWINGS AND ALL PARTS THERE OF REMAIN THE PROPERTY OF HAIGH WORKMAN LTD. ©2020	Project N	^{lo.} 22 189	RC no.	N/A	3 of 3
			File	WAIPAPA (LOT 1 DP 178287)/ENGINEERING/DRAWINGS	1/22 189_GEOTECHNICAL DRAWINGS.DW		λ	22 103			Ayne Thorburn at 19/01/2023 3:15

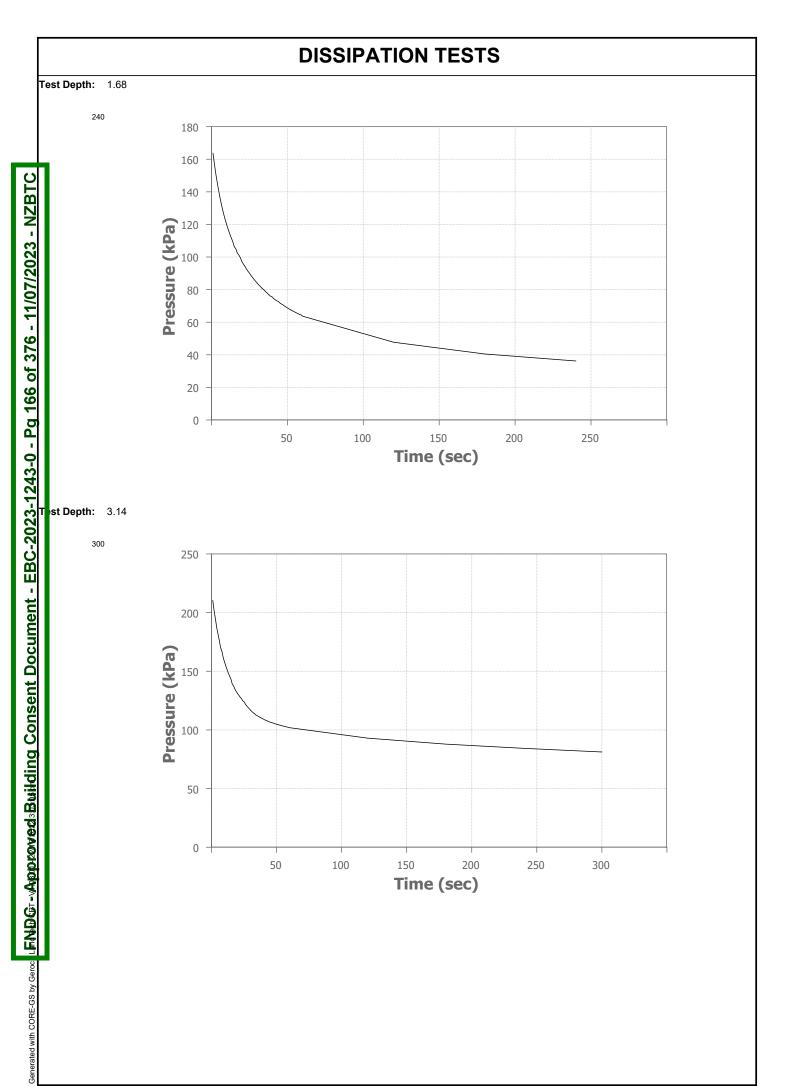
F

Е

D

С

В


Preliminary Geotechnical Appraisal Report Proposed Industrial Development Lots 6-8 Kahikatearoa Lane Extension, Waipapa Peter Swan Limited

January 2023

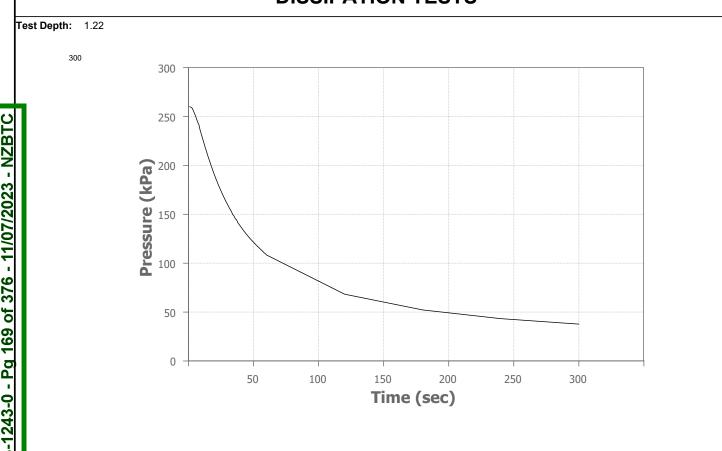
Appendix B – Site Investigation Logs

22 189

	LandTech	CONE	PENETRA		I TEST (C	CPT) L	_OG		HOLE NO.: CPT01
	CLIENT: Haigh Workm PROJECT: CPT Testing								JOB NO.: LTA22467
		Kahikatearoa Lane, Waipapa 00mE, 6103004.00mN (NZTM20	000)		PERATOR: CW EVATION: 78.5m	(NZVD201			DATE: 19/12/2022 DATE: 19/12/2022
<u>2810</u>	Tip Resistance (MPa) 7 8 7 8 9 0	Sleeve Friction (kPa) Pore Pressu (kPa) 00 0 00000000000000000000000000000000		Depth	Friction Ratio (%)	Assumed Water Level	SBT		SBT Description (filtered)
ernuce	EOH: 4.66m	Dissipation Test 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \\ 9 & 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 10 \\ 11 \\ 11 \\ 12 \\ 10 \\ 11 \\ 11 \\ 12 \\ 11 \\ 11$				Clays: cla Clays: cla Clays: cla Silt mixtur Sand mixt	y to silty clay y to silty clay y to silty clay res: clayey silt & silty clay tures: silty sand to sandy silt tures: silty sand to sandy silt
	REMARKS: Groundwater measured a	t 1.3m						DETAIL Numbei	
S by Ger							Cone ⁻	Гуре	PC
ORE-G	NOTES:						Area R	latio	0.80
1 with C(Filter I	ocatio	n u2
Generated with CORE-GS by Geroc - Land									Reason Auger fail

DISSIPATION TESTS

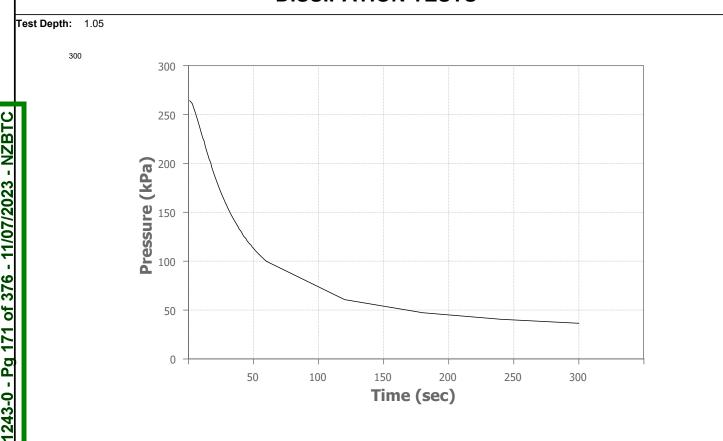
Generated with CORE-GS by Geroc


	LandTech	C	ONE PE	NETRAT	101	N TEST (C	PT) L	OG	CPT02
ŀ	CLIENT: Haigh Workma	an							JOB NO.:
╞	PROJECT: CPT Testing SITE LOCATION: Lot 6 - 8,	Kahikatearoa Lane, Wa	aipapa		0	PERATOR: CW		S	LTA22467 TART DATE: 19/12/2022
	CO-ORDINATES: 1683471.			·		LEVATION: 78.5m	n (NZVD2016		END DATE: 19/12/2022
ا د	Tip Resistance (MPa)	Sleeve Friction (kPa)	Pore Pressure (kPa)	Inclination (°)	Depth	Friction Ratio (%)	Assumed Water Level	SBT	SBT Description (filtered)
		- 100 - 200 - 400	300 100 300	0 8 4 9 0 7 7		0 4 0 8	٩٤	8 Q 7 7 7	
•	$\langle \rangle$	2	e la			L.			Clays: clay to silty clay
<u>202110111</u>		Dissipat	tion Test 1.22m seconds						Silt mixtures: clayey silt & silty clay Clays: clay to silty clay
	J. A.	2	14		2	\mathcal{A}			
			T		Ξ Ξ	Å			Clays: clay to silty clay
•			2		3 1				orayo, oray to only oray
			{		4	WW			Clays: clay to silty clay
5	EOH: 4.07m								
00					5				
5					6				
-					6 7				
- LUU-2020-1211					7				
ť									
5					8 8				
					9 1				
2									
ľ					10				
					11				
					12				
5					E 3				
3					13				
					13				
2					14				
3					15				
2									
5					16				
					17 18 19				
Ş									
					18				
ļ					= =				
					20				
					20				
	REMARKS:				: :			TEST DI	ETAILS:
	Groundwater measured a	t 1.0m						Cone Nu	
ny Gen								Cone Ty	r pe PC
20-12	NOTES:							Area Ra	
								Filter Lo	
Generated with CORE-GS by Geroc - Land									tion Reason Auger fail
9									Auger Tall

Г

HOLE NO.:

٦



Generated with CORE-GS by Geroc

	and Tech		CONE PE	NETRA		N TEST (C	CPT)	LOG			CPT03
	Haigh Workma	an								•	JOB NO.:
	T: CPT Testing ATION: Lot 6 - 8,	Kahikatearoa Lane,	Waipapa		0	PERATOR: CW			5	START DA	LTA22467 TE: 19/12/2022
		00mE, 6102950.00r			E	LEVATION: 78.5m	n (NZVD20)16)		END DA	TE: 19/12/2022
- - c		Sleeve Friction (kPa)	Pore Pressure (kPa)	Inclination (°)	Depth	Friction Ratio (%)	Assumed Water Level	SB	т	:	SBT Description (filtered)
-10	-30 -40	- 100 - 200 - 300 - 400	300 100 100 		E =	2 6 8 8		4 2	8 8	Clays: clay to	silty day
EOH: 8.4	In the second seco	7	spation Test Toom 300 seconds		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Clays: clay to Clays: clay to Silt mixtures: Clays: clay to Clays: clay to Clays: clay to	silty clay silty clay clayey silt & silty clay silty clay
					20						
REMARK	S:			· · · · · · · · · · · · · · · · · · ·	r		I		TEST D	DETAILS:	
Groundwa	ater measured a	t 1.0m							Cone N	lumber	Mks953
									Cone T		PC
NOTES									Area R		0.80
NOTES:											
										ocation	u2
									Termin	ation Re	ason Auger fail

-FNDGr-vApproved®Building Consent Document - EBC-2023-1243-0 - Pg 171 of 376 - 11/07/2023 - NZBTC

Generated with CORE-GS by Geroc

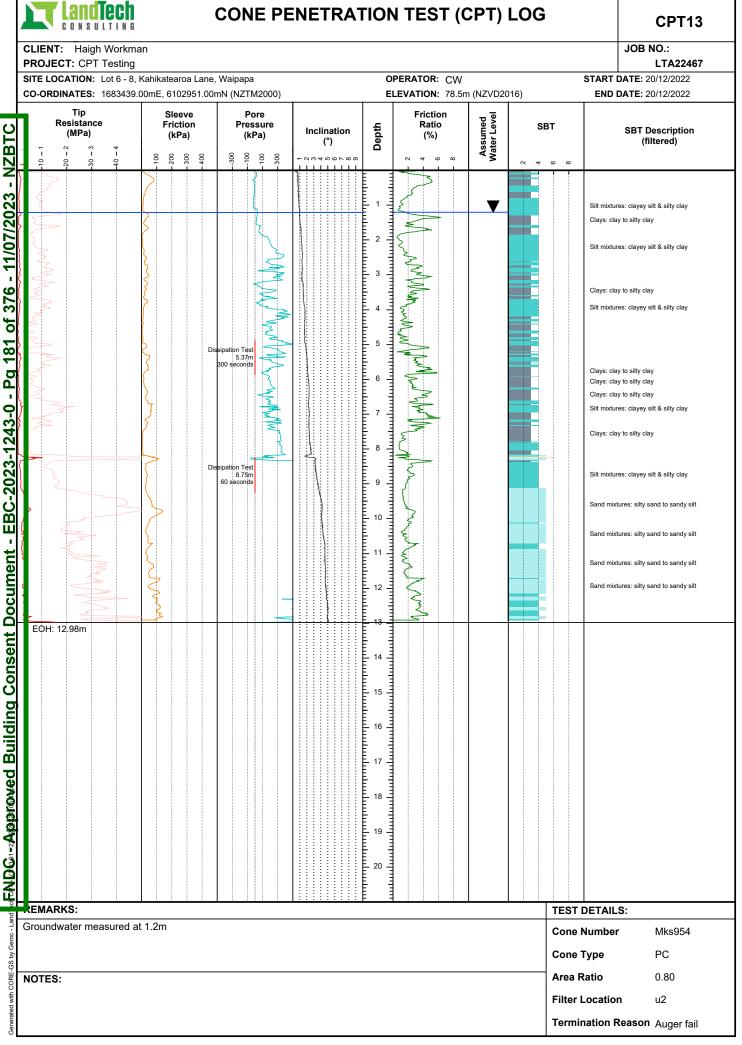
	LandTech	(CONE PE			I TEST (C	CPT)	LOG		F	IOLE NO.: CPT04
CLIE	ENT: Haigh Workma									J	OB NO.:
PRO	JECT: CPT Testing LOCATION: Lot 6 - 8,		Mainana		0	PERATOR: CW					LTA22467 TE: 19/12/2022
	DRDINATES: 1683446.0					EVATION: 78.5m	n (NZVD20)16)			TE: 19/12/2022
1	Tip Resistance (MPa)	Sleeve Friction (kPa)	Pore Pressure (kPa)	Inclination (°)	Depth	Friction Ratio (%)	Assumed Water Level	SE	BT	s	BT Description (filtered)
-10-1	-20 - 2 -30 - 3 -40 - 4	- 100 - 200 - 300 - 400	300 100 - 100 - 300	-00400rao	Ō	6 4 9 8	Ast Wate	0 4	98		(
	>	>					-			Clays: clay to	silty clay
			{		1	- V	•			Clays: clay to	
\sim	>	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2	M				Silt mixtures:	clayey silt & silty clay
S.	254	-			3	V July					
			Ž			M N				Clays: clay to	silty clay
2		$\langle $	<u>S</u>)	4						
		5	, starter and star		5						
					6	} l				Clays: clay to	silty clay
1	>	>				\mathcal{M}				Clays: clay to	silty clay
EC	DH: 7m				7	<u> </u>				, , , -	
					- 8 -						
					9						
					10						
					11						
					12						
LEM Grou					= =						
					13						
					14						
					15						
					= =						
					16						
					17						
					18						
					19						
					20						
	IARKS: undwater measured at	0.9m								DETAILS:	
J. UL										Number	Mks954
	ES:								Cone ⁻ Area F		PC 0.80
101	20.									_ocation	u2
											ason Auger fail

							_			HOLE NO.:
			CONE PE	NETRA	ΓΙΟΙ	N TEST (O	CPT) L	.0G		CPT05
	CLIENT: Haigh Workma PROJECT: CPT Testing	an								JOB NO.: LTA22467
	SITE LOCATION: Lot 6 - 8,	Kahikatearoa Lane,	Waipapa		c	PERATOR: CW			START	DATE: 19/12/2022
	CO-ORDINATES: 1683420.	00mE, 6102954.00r	mN (NZTM2000)		E	LEVATION: 78.5n	<u> </u>	6)	END	DATE: 19/12/2022
מוכ	Tip Resistance (MPa) - - - - - - - - - - - - - -	Sleeve Friction (kPa)	Pore Pressure (kPa)	Inclination (°)	Depth	Friction Ratio (%)	Assumed Water Level	SBT		SBT Description (filtered)
<u> 2023 - NZ</u>			3 1		L 1 -	A MANANA A			Silt mixtu	res: clayey silt & silty clay
<u>07//0/LL</u>	2				2					ay to silty clay ay to silty clay
3/6 - 7						M				ay to silty clay ay to silty clay
1/3 01			Jund		5	W W No			Clays: cla	ay to silty clay
0 1 -	3					A A			Clays: cla	ay to silty clay
<u> 123-124</u>							-			res: clayey silt & silty clay res: clayey silt & silty clay
EBC-2023-1243-0					10	A Company				tures: silty sand to sandy silt
<u>Consent Document -</u>		mar and	Mr. Allow Mr. Allow		11 - 12 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15				Silt mixtu	res: clayey silt & silty clay
			Mu Muri		15 - 16 -	<u>A</u>				res: clayey silt & silty clay tures: silty sand to sandy silt
2 H201010V					18 -	Ę				tures: silty sand to sandy silt tures: silty sand to sandy silt
-100 MUL	EOH: 20.52m	w A A A A A A A A A A A A A A A A A A A			20				Sand mix	tures: silty sand to sandy silt
andio	REMARKS.							TEST	DETAIL	.S:
roc - La	Groundwater measured a	t 1.6m		_	_	_	_	Cone	Numbe	r Mks954
S by Gei								Cone ⁻	Туре	PC
RE-GS	NOTES:							Area F	Ratio	0.80
Generated with CORE-GS by Geroc - Land									Locatio	
Generati								Termi	nation	Reason u2 refusal

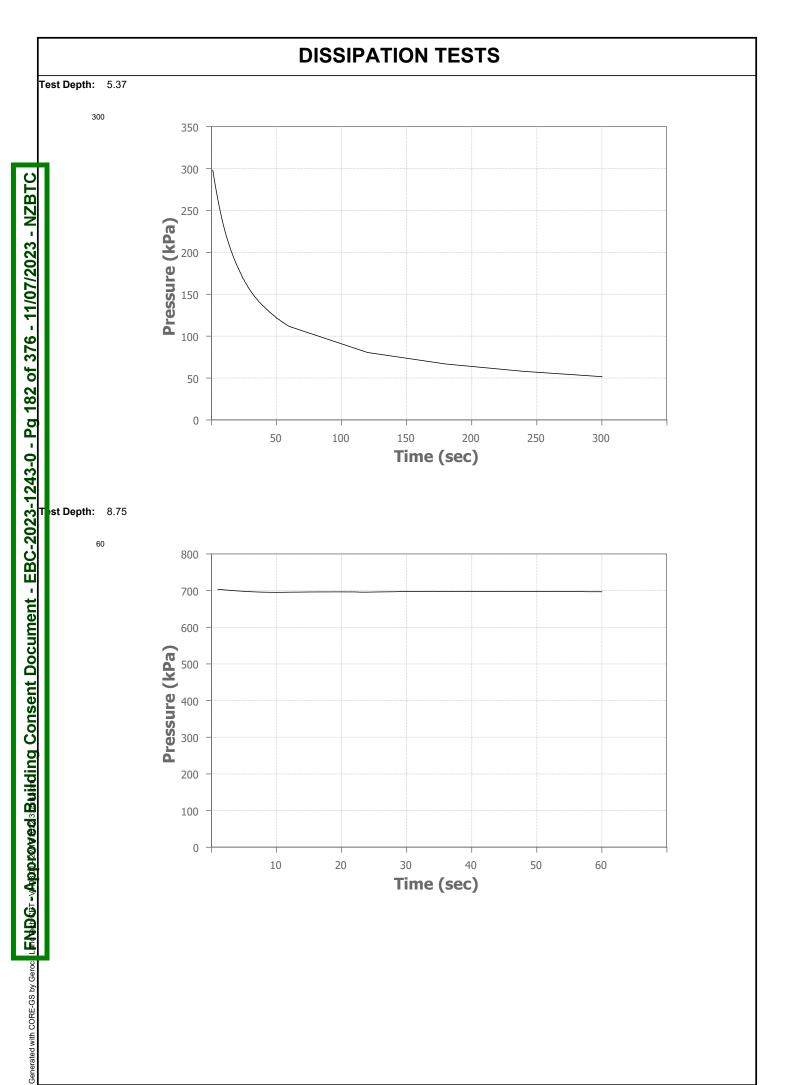
	LandTech		CONE PE	NETRA		N TEST (C	CPT)	LOG		HOLE NO.: CPT06
	CLIENT: Haigh Workma PROJECT: CPT Testing SITE LOCATION: Lot 6 - 8,	Kahikatearoa Lane,				PERATOR: CW	(A 1	40)		JOB NO.: LTA22467 RT DATE: 20/12/2022
NZBIC	CO-ORDINATES: 1683379.	00mE, 6103005.001	nN (NZTM2000) Pore Pressure (kPa) 000 00 000 000 00 0000 000 000 000 000 000 000 000 000 000 0000 000 000 0	Inclination (°) - ∾ ∾ ⊄ ம ம ⊳ ∞ ∞	Depth	LEVATION: 78.5m Friction Ratio (%)	Assumed Water Level	16) SBT ∾ + «	- - -	ID DATE: 20/12/2022 SBT Description (filtered)
<u> ანND© - ამეთიდი</u> d Building Consent Document - EBC-2023-1243-0 - Pg 174 of 376 - 11/07/2023 - N	EOH: 3.06m				1 1 2 3 3 1 1 1 1 1 1 1 1 1 1				Silt m Clays	: clay to silty clay : clay to silty clay : clay to silty clay : clay to silty clay
-GS by Geroc - Land	Groundwater measured a	t 0.9m							TEST DETA Cone Numi Cone Type	ber Mks954 PC
Generated with CORE-GS by Geroc - Land	NOTES:								Area Ratio Filter Locat Terminatio	0.80 tion u2 n Reason Auger fail

OPERATOR: CW START DATE: 20/12/2022 CO-ORDINATES: 103303.00mE, 012/00000 MN (NZ/M2000) CELEVATION: 78.5m (NZ/U2016) START DATE: 20/12/2022 Tip Sileeve Priction Friction Sile ve Priction Sile ve Priction Colspan="2">CM DATE: 20/12/2022 Tip Sile ve Priction Resistance Sile ve Priction Ratio GUID ATE: 20/12/2022 Tip Sile ve Priction Ratio Sile ve Priction Tip Sile ve Priction GUID TIP CUID TIP Tip Sile ve Priction Tip Sile ve Sile ve Priction CUID TIP Tip Sile ve Priction CUID TIP CUID TIP CUID TIP CUID TIP CUID TIP <th co<="" th=""><th>ſ</th><th>LandTech</th><th></th><th>CONE PE</th><th></th><th></th><th>I TEST (C</th><th>CPT)</th><th>LOG</th><th></th><th></th><th>HOLE NO.: CPT07</th></th>	<th>ſ</th> <th>LandTech</th> <th></th> <th>CONE PE</th> <th></th> <th></th> <th>I TEST (C</th> <th>CPT)</th> <th>LOG</th> <th></th> <th></th> <th>HOLE NO.: CPT07</th>	ſ	LandTech		CONE PE			I TEST (C	CPT)	LOG			HOLE NO.: CPT07
Image: Comparison of the contraction of			an									JOB NO.: LTA22467	
Tip (MP3) Seture (MP3) Power (MP3) Description (MP3) Power (MP3) Description (MP3) Set (MP3) Set (MP3) Set (MP3) Set (MP3)<	Ī								16)				
	NZBT	Tip Resistance (MPa)	Sleeve Friction (kPa)	Pore Pressure (kPa)	(°)	Depth	Ratio (%)				Clays: clay	(filtered)	
TENTARKS. TEST DETAILS: Groundwater measured at 0.7m Cone Number Mks954 Cone Type PC NOTES: Area Ratio 0.80 Filter Location u2 Termination Reason Auger fail	ment - EBC-2023-1243-0 - Pg 1/5 of 3/6 - 11/0//2023 -										Clays: clay	anic soil y to silty clay	
NOTES: Cone Type PC Information Reason Auger fail	oc - Land		t 0.7m										
NOTES: Area Ratio 0.80 Filter Location u2 Termination Reason Auger fail	S by Gero												
Filter Location u2 Termination Reason Auger fail	ORE-GS	NOTES:										0.80	
Termination Reason Auger fail	d with C(Filter L	ocatio	n u2	
	Generatet									Termir	nation R	eason Auger fail	

	LandTech		CONE PE	NETRAT	101	I TEST (PT) I	OG		HOLE NO.:
										CPT08
	CLIENT: Haigh Workma PROJECT: CPT Testing									JOB NO.: LTA22467
	SITE LOCATION: Lot 6 - 8, CO-ORDINATES: 1683378.					PERATOR: CW -EVATION: 78.5n	n (NZVD20 ⁻	16)		T DATE: 20/12/2022 D DATE: 20/12/2022
ا د	Tip Resistance (MPa)	Sleeve Friction (kPa)	Pore Pressure (kPa)	Inclination	Depth	Friction Ratio (%)	Assumed Water Level	SB	r	SBT Description
NZBI	40	100 200 300 400	-300 -100 300 300	∽∾∞4∽∞∽∞⊙	De	0 4 0 0	Assi Watei	6 4 5	οω	(filtered)
Ž '		>	\sim			A.				
UZ S		ζ			1	\sim			Clavs	: clay to silty clay
112		$\left\{ \right\}$				M				, , , ,
<u>11/0///2023</u>		<u> </u>			2				Sand	mixtures: silty sand to sandy silt
•	E0H: 2.72m				3					
3/6					4					
<u>6 01</u>					4 5 6					
9/L										
2					6					
- -					7					
145					7					
					8					
- EBU-2023-1243-U					9					
ٳ					10					
Ŭ										
					11					
<u>Document</u>										
1001					13					
בו					13					
Se					- 14 -					
50					15					
					13					
Idir					- 16 -					
					17					
D B B B B B B B B B B B B B B B B B B B					18					
101										
000					19					
3.01 = 23										
					- 19 - 20 -					
	REMARKS:								TEST DETA	NLS:
oc - Lanc	Groundwater measured a	t 0.8m							Cone Num	
s by Gerc									Cone Type	PC
ORE-GS	NOTES:								Area Ratio	0.80
ad with C									Filter Locat	ion u2
Generate	REMARKS: Groundwater measured a NOTES:								Terminatio	n Reason Auger fail
1										


	LandTech		ENETRATIO	ON TEST (C	PT) LOG	ì	HOLE NO.: CPT09
	CLIENT: Haigh Workma PROJECT: CPT Testing	an					JOB NO.: LTA22467
ł	SITE LOCATION: Lot 6 - 8,	Kahikatearoa Lane, Waipapa 00mE, 6102954.00mN (NZTM2000)		OPERATOR: CW ELEVATION: 78.5m	(NZVD2016)		DATE: 20/12/2022
781C	Tip Resistance (MPa) - -	Sleeve Friction (kPa) Pore Pressure (kPa) 00 00 00 00 00 00 00 00 00 00 00 00 00	Inclination (°)	Friction Ratio (%)	e le	вт	SBT Description (filtered)
- 11/0//2023 - N	ЕФН: 2.47m			1 2 3		Clays: o	clay to silty clay clay to silty clay hixtures: silty sand to sandy silt
In the mean of the second seco				3			
Generated with CORE-GS by Geroc - Land ect	REMARKS: Groundwater measured a	t 0.7m	1::::::F			TEST DETA	er Mks954
RE-GS by (NOTES					Cone Type Area Ratio	PC 0.80
with COR	NOTES:					Filter Locati	
Generated							Reason Auger fail

		and o N S	Tech	G	(ENETRA		N TEST (CPT)	LOG			CPT10
ł	CLIENT:													JOB NO.:
┢	PROJEC			-	aroa Lane	Waipapa		0	PERATOR: CW	1		9	START	LTA22467 ATE: 20/12/2022
						nN (NZTM2000)			LEVATION: 78.5		16)			DATE: 20/12/2022
د		Tip sistano (MPa)	ce	Fri	eeve ction (Pa)	Pore Pressure (kPa)	Inclination (°)	Depth	Friction Ratio (%)	Assumed Water Level	SB	т		SBT Description (filtered)
	-10 - 1	-20 -2	-40 - 4	- 100	- 300	300 100 -300	-00400ra0		8 9 7 2	As Wat	0 4	o eo		
Ž						\$							Clays: clay	to silty clay
1/0/1/2023	3			(1	h				Clays: clay	to silty clay
3	3					3		2	s. Je				Silt mixture	s: clayey silt & silty clay
2		<i>52</i>						2					Clays: clay	to silty clay
┓	E0H: 2.9					<u>}</u>		3					Sand mixtu	res: silty sand to sandy silt
- 0/0	EOH: 2.9	95M						4 5 6 7 8 9						
5														
2								5						
7								6						
								7						
224														
								8						
								9						
j														
								11 -						
ו								13 14 14 15 16 17 17 17 20						
								14						
5								15						
7								16						
								16						
í								- 17 -						
5								18						
								19						
								19 - 20 -						
								20						
	REIMARN		:	• ፡ ፡	: :					1		TEST D	ETAIL	3:
	Groundwa	ater me	easured	at 0.7								Cone N	lumber	Mks954
5												Cone T	уре	PC
	NOTES:											Area Ra	atio	0.80
												Filter L	ocation	u u2
												Termin	ation R	eason Auger fail
5														


	I and Tech	CONE PE			TEST (C		00			HOLE NO.:
	LandTech	CONLIFE				·	_00			CPT11
	CLIENT: Haigh Workman PROJECT: CPT Testing									JOB NO.: LTA22467
	SITE LOCATION: Lot 6 - 8, Kahik CO-ORDINATES: 1683357.00mE				ERATOR: CW EVATION: 78.5m	(NZVD20 ²	16)	SI		ATE: 20/12/2022 ATE: 20/12/2022
	Тір	Sleeve Pore			Friction					
5	(MPa)	Friction Pressure (kPa) (kPa)	Inclination (°)	Depth	Ratio (%)	Assumed Water Level	SB	т		SBT Description (filtered)
NZBI	-10 - 1 -20 - 2 -30 - 3 -40 - 4 -100	- 200 - 300 - 400 100 - 100 - 300	-00400rao	-	8 9 7 7	As Wat	6 4	8 8		
•				Internet	/ www	T			Clays: clay	to silty clay
20				1	MM					to silty clay
1/07/2023		The second se		2				0	Clay - orga	nic soil
11	EOH: 2.53m	K		3						
9				, 11111						
<u>of 37</u>				4						
ກ				5						
				IIII						
ם ק				6						
				7						
243-0				8						
23-1				, 11111						
-2023				9						
EBC				10						
iment				11						
<u>Sum</u>				12						
Docu				13						
<u>snt</u>				Intra						
<u>nse</u>				14						
Building Consent				14						
<u>bul</u>				16						
olin										
				17						
B				18						
Vol e										
-21				19						
5				20						
HUNDER-ADDROVED										
	REMARKS: Groundwater measured at 0.8r	m						TEST DE		
y Geroc								Cone Nu Cone Ty		Mks954 PC
RE-GS t	NOTES:							Area Rat		0.80
I with CO								Filter Lo		
Generated with CORE-GS by Geroc - Land										eason Auger fail
U										

HOLE NO.:

	LandTech		CONE PE	NETRA		I TEST (C	CPT) L	.OG		HOLE NO.: CPT12
	CLIENT: Haigh Workma PROJECT: CPT Testing SITE LOCATION: Lot 6 - 8, 1 CO-ORDINATES: 1683407.0	Kahikatearoa Lane,				PERATOR: CW EVATION: 78.5m	ה (NZVD201	6)		JOB NO.: LTA22467 DATE: 20/12/2022 DATE: 20/12/2022
	Tip Resistance (MPa) 1 1 2 1 3 2 4 2 9 8	Sleeve Friction (kPa) 00 00 00 00	Pore Pressure (kPa)	Inclination (°)	Depth	Friction Ratio (%)	Assumed Water Level	SBT		SBT Description (filtered)
ালম⊍জিল্যক)proved Building Consent Document - EBC-2023-1243-0 - Pg 180 of 3/6 - 11/0//2023 - N	EOH: 2.1 6m				$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 7 \\ 10 \\ 10 \\ 11 \\ 12 \\ 10 \\ 11 \\ 12 \\ 10 \\ 11 \\ 12 \\ 10 \\ 11 \\ 12 \\ 10 \\ 11 \\ 12 \\ 10 \\ 10$				1	<pre>.res: clayey silt & silty clay</pre>
by Geroc - Land	Groundwater measured at	: 1.0m						Coi	ne Numbe ne Type	
Generated with CORE-GS by Geroc - Land	NOTES:							Are	ea Ratio er Locatio	0.80

HOLE NO .:

ſ									HOLE NO.:
			CONE PE	NETRA	ΓΙΟΙ	N TEST (O	CPT) L	LOG	CPT14
ľ	CLIENT: Haigh Workma PROJECT: CPT Testing	an							JOB NO.: LTA22467
ſ	SITE LOCATION: Lot 6 - 8,					PERATOR: CW	- (NIZ) (D204		RT DATE: 20/12/2022
ł	CO-ORDINATES: 1683447.					Eriction	ri r	6) EN	ID DATE: 20/12/2022
ט	Resistance (MPa)	Sleeve Friction (kPa)	Pore Pressure (kPa)	Inclination	Ę	Friction Ratio	Assumed Water Level	SBT	SBT Description
1 P R		. ,		(°)	Depth	(%)	Assu /ater		(filtered)
Y	-10	- 100 - 200 - 300 - 400		<u> </u> + − − − − − − − − + − − − + − − − + −	-	0 4 0 00	`≤	0 4 0 0	
2023 -			J. J.	*			▼	Silt m	ixtures: clayey silt & silty clay
		$\left\{ \right\}$	M			$\langle \rangle$			nixtures: clayey silt & silty clay s: clay to silty clay
10/1		8							c clay to silty clay
-		3	<u> </u>		E 3 -	A Real Provide A Real ProvideA Real ProvideA Real ProvideA Real Provide A Real Pr		Silt m	ixtures: clayey silt & silty clay
2/0	\sim	{			Ē	A C		Clays	:: clay to silty clay
2 2	3	<pre> </pre>	The second se			\mathbf{S}			nixtures: clayey silt & silty clay s: clay to silty clay
83					5 -	Ś			:: clay to silty clay
Р Л					6 -	<pre></pre>		Clays	s: clay to silty clay
• (}		Clays	s: clay to silty clay				
243-0		_	- Marine					Clays	s: clay to silty clay
		Z	M		Ē 8 -	$\sqrt{\gamma}$			
2 S		5	MM		Ē	1 N			
<u>BC-2023-1</u>	3-12				E 9 _	5			ixtures: clayey silt & silty clay mixtures: silty sand to sandy silt
ٳ		3				جر			mixtures: silty sand to sandy silt
Ц					E 10 -	5			nixtures: clayey silt & silty clay mixtures: silty sand to sandy silt
닐	Zana and a second secon	2			E 11 -	ž			mixtures: silty sand to sandy silt
ment		ζ				<u>S</u>		Sand	mixtures: silty sand to sandy silt
<u> I</u>		2			E 12 -			Sand	mixtures: silty sand to sandy silt
nocn	EQH: 12.58m			<u> </u>	E				
BUt					Ē				
N S C					E 14 -				
Building Consent									
					Ē				
D					E 16 -				
n					17 -				
					E :				
					18 -				
õ									
2					19 – E				
5					E 20 -				
					Ē				
	REMARKS:				F	1		TEST DETA	AILS:
oc - Lar.	Groundwater measured a	t 1.2m						Cone Numl	ber Mks954
by Ger								Cone Type	PC
RE-GS	NOTES:							Area Ratio	0.80
with CO								Filter Locat	
Generated with CORE-GS by Geroc - Land									
Gen									n Reason Auger fail

PO Box 89, 0245 6 Fairway Drive Kerikeri, 0230 New Zealand

HAIGH WORKMAN E Civil & Structural Engineers

Phone 09 407 8327 09 407 8378 Fax www.haighworkman.co.nz

info@haighworkman.co.nz

	Borehole Log	- BH3	Hole Location: Ref	er to Si	te P	lan					J	OB I	No.	•	22	18	39
втс	CLIENT: Date Started: Date Completed:	Peter Swan Limited 21/12/2022 21/12/2022	SITE: DRILLING METHOD: HOLE DIAMETER (mm)	Hand	Au	aroa La ger	ine, W	aipap	a (Lot LOGO CHEO	GED E	BY:	d Plan CN WT		:87)			
3 - NZBTC	В	Soil Descriptic Based on NZGS Logging Guide		Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Ren	nould	Shea ed Va igths	ne She	ear		a Pene lows/1		
11/07/2023	SILT , some clay; greyis [Tauranga Group]	sh brown, streaked orang	ge. Very stiff, dry, low plasticity.	0.0		****** ****** ****** ****** ****** *****								0	5 10	15	20
1	Clayey SILT , trace fine orange. Very stiff, mois		h grey, mottled light brownish	0.5		*****		0	2			173					
of 376	0.7m: becomes moist t			E			gI ∿¦{	31	3		107						
184	SILT, trace fine sand; g	sh grey to grey, trace fine grey to bluish grey, stiff, s		1.0	GROUP		t 0.75mb	2	2			22	21				
0 - Pg	1.2m: becomes soft.1.4m: becomes no fine	sand, light yellowish gre	y. Low plasticity.		TAURANGA	××××××××××××××××××××××××××××××××××××××	Groundwater at 0.75mbgl ${\mathbb M}$	16	28	2							
1243-	1.5m: becomes trace fi 1.7m: becomes no fine			1.5	TAU	*****	Ground		2								
EBC-2023-1243-0		grey. No plasticity. Poor :	sample recovery.	2.0		****** *******************************		20	2 3	5							
1.1						×××××× ××××××× ×××××××××××××××××××××××											
sent Document	End of B	orehole (2.6mbgl) Unal	ole to Penetrate	2.5		*****									Penet ediate		
sent D				3.0													
ing Con				3.5													
d Build			n.ste	4.0													
prove	1 ANA		THE A														
FNDC - Approved Building				4.5													
		CLAY	.T SAND		GF	RAVEL	*	FI	ILL		Remou	ted shea Ilded she Penetron	ear va		-		
) Penetrate. T.S. = Topso ter test begins at base o Vane S/N: 2278								I		GIGUUI					

https://haighworkman2020.sharepoint.com/sites/suitefiles/Shared Documents/Clients/Peter Swan Limited/Jobs/22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)/Engineering/Investigation/22 189_BH Logs

PO Box 89, 0245 6 Fairway Drive Kerikeri, 0230 New Zealand

HAIGH WORKMAN E Civil & Structural Engineers

Phone 09 407 8327 09 407 8378 Fax www.haighworkman.co.nz

info@haighworkman.co.nz

Borehole Log - BH4	Hole Location: Ref	er to Site	Plan				JOB No		22	189
CLIENT:Peter Swan LDate Started:21/12/2022Date Completed:21/12/2022	mited SITE: DRILLING METHOD: HOLE DIAMETER (mm)	Hand A		.ane, W	/aipap	oa (Lot 1, Dep LOGGED B CHECKED		287)		
Soil Des Based on NZGS Logg		Depth (m)	Graphic Log	Water Level	Sensitivity	Remoulde	Shear and ed Vane Shear gths (kPa)			trometer 00mm)
Clayey SILT ; orangish brown to brown. plasticity. [Tauranga Group] 0.2m: becomes moist. Clayey SILT , minor fine to medium san		0.0			10	10	104	0 5	10	15 20
 low plasticity. SILT, trace fine sand and clay; brown. 0.9m: some fibrous organics. 1.1m: becomes brownish grey to grey. 1.2m: becomes no organics. Saturated 	Very stiff, wet, no to low plasticity.			iter at 0.7mbgl √∭	26	3	90			
1.4m: becomes mottled light brown. So 1.5m: becomes bluish grey.	ft. No clay.	<u>1.5</u>		Groundwater	16	2 28				
1.9m: trace fine sand. End of Borehole (2.2mb	gl) Unable to Penetrate	2.0			21	3	72			rometer Refusal
		2.5								
		3.0								
		4.0								
		<u>4.5</u> 								
	SILT SAND		GRAVE	L	F	ILL f	Corrected shear var Remoulded shear va Scala Penetrometer	ane readii	-	•
Note: UTP = Unable To Penetrate. T.S. Scala penetrometer test begins a Hand Held Shear Vane S/N: 2278	t base of borehole.					_				_

https://haighworkman2020.sharepoint.com/sites/suitefiles/Shared Documents/Clients/Peter Swan Limited/Jobs/22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)/Engineering/Investigation/22 189_BH Logs

PO Box 89, 0245 6 Fairway Drive Kerikeri, 0230 New Zealand

HAIGH WORKMANE Civil & Structural Engineers

 Phone
 09 407
 8327

 Fax
 09 407
 8378

 www.haighworkman.co.nz

info@haighworkman.co.nz

Borehole Log - BH5 Hole Location: Refer to Site Plan						JOB No).	22	189		
Date Started: 21/12/2022	6						a (Lot 1, Depo LOGGED BY CHECKED B	: CN	287)		
Soil Description Based on NZGS Logging Guidelines 2005		Depth (m)	Geology Graphic Log Water Level Sensitivity		Sensitivity	Vane Shear and Remoulded Vane Shear Strengths (kPa)		Scala Penetrometer (blows/100mm)			
 SILT, some clay; brown to greyish brown. Very stiff, oplasticity. [Tauranga Group] Clayey SILT; orangish brown. Very stiff, dry, medium 0.3m: becomes moist. 0.4m: becomes moist. Clayey SILT, trace fine to medium sand.; greyish brown brownish orange. Stiff to very stiff, moist to wet, med SILT, trace clay; brownish grey to grey. Stiff, saturate 1.1m: becomes grey, mottled light yellowish brown. N 1.4m: becomes grey, mottled orange to dark orange. Between 1.6 to 1.9m: trace fibrous organics. Soft. SILT, trace sine sand; bluish grey. Firm, saturated. N 2.3m: becomes very stiff. 	n plasticity. wm, mottled brown and ium plasticity. ed, no to low plasticity. No clay. No plasticity.		TAURANGA GROUP		Groundwater at 0.75mbgl	12 26 22 34 8	3 3 2 45 2 2 1 UTP	76			
End of Borehole (2.9mbgl) Unable to		3.0						rrected shear var	Refu:	al @ 3	rometer .Ombgl
Www TOPSOIL CLAY SILT Note: UTP = Unable To Penetrate. T.S. = Topsoil. Scala penetrometer test begins at base of bord Hand Held Shear Vane S/N: 2278	ehole.		GF	RAVEL		F	ILL Re	moulded shear v ala Penetrometer	ane read		•

https://haighworkman2020.sharepoint.com/sites/suitefiles/Shared Documents/Clients/Peter Swan Limited/Jobs/22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)/Engineering/Investigation/22 189_BH Logs

HAIGH WORKMAN E Civil & Structural Engineers

Phone 09 407 8327 09 407 8378 Fax www.haighworkman.co.nz

info@haighworkman.co.nz

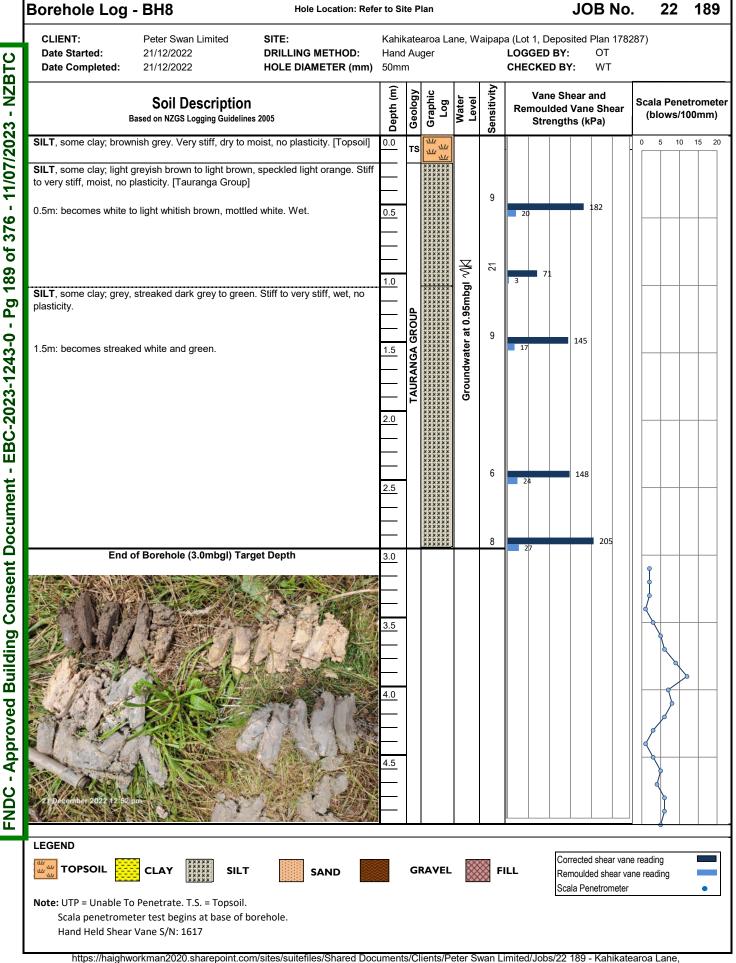
	Borehole Log	- BH6	Hole Location: Refe	er to Sit	e Pl	an				JOB N	lo.	2	22	189
TC	CLIENT: Date Started: Date Completed:	Peter Swan Limited 21/12/2022 21/12/2022	SITE: DRILLING METHOD: HOLE DIAMETER (mm)	Kahik Hand 50mm	Aug		ne, W	aipap	a (Lot 1, Depo LOGGED BY CHECKED B	: от	17828	7)		
3 - NZBTC	в	Soil Description Based on NZGS Logging Guideling		Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Remoulded	hear and I Vane She :hs (kPa)	ar			rometer 0mm)
uilding Consent Document - EBC-2023-1243-0 - Pg 187 of 376 - 11/07/2023	Clayey SILT ; greyish b [Tauranga Group] 0.3m: becomes mottled SILT , trace clay; light b stiff, moist, no plasticity 0.7m: becomes moist t 1.2m: becomes wet. 1.4m: becomes wet to s	rown. Very stiff, dry, no to l d whitish orange, light orang rownish grey, streaked ligh /. o wet.	ow plasticity. ge and white. it orange, mottled white. Very	0.0	TAURANGA GROUP G		Groundwater Not Encountered	4 12 5 9 15 Se	20 20 20 10 20 74	199				
FNDC - Approved Building	LEGEND	*****	SAND	4.0	GR	AVEL		F	ILL Re	prrected shear emoulded shear ala Penetrom	ar vane			
	Scala penetrome Hand Held Shear	 Penetrate. T.S. = Topsoil. ter test begins at base of b Vane S/N: 1617 												

https://haighworkman2020.sharepoint.com/site s/Shared Documents/Clients/Peter Swan Limited/Jobs/22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)/Engineering/Investigation/22 189_BH Logs

HAIGH WORKMANE Civil & Structural Engineers

Phone 09 407 8327 09 407 8378 Fax www.haighworkman.co.nz

info@haighworkman.co.nz


	Borehole Log -	BH7	Hole Location: Refe	er to Sit	te P	lan				JOB I	No.		22	189	9
)	CLIENT: Date Started: Date Completed:	Peter Swan Limited 21/12/2022 21/12/2022	SITE: DRILLING METHOD: HOLE DIAMETER (mm)	Hand	Au		ine, W	aipap	oa (Lot 1, Depo LOGGED BY CHECKED B	' : OT	17828	87)			
	Ba	Soil Description ased on NZGS Logging Guideline	s 2005	Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Remoulded	hear and d Vane She ths (kPa)	ear			trome 00mm	
	SILT, some clay; greyis	h brown. Very stiff, dry, no	plasticity. [Topsoil]	0.0	тѕ							0 5	10	15 2	20]
	Clayey SILT ; light greyi: [Tauranga Group]	sh brown. Stiff to very stiff,	moist, no plasticity.	0.5				3	30	101					
2	0.7m: becomes moist to	o wet.		E			₹ N								
9 - 00 - R	0.9m: becomes wet.			1.0	-			9	20	1	82				-
- 0-0+71-0	1.4m: becomes mottled SILT; dark brownish bla	dark brownish black. ick, stiff, wet, no plasticity.	Organic peat.	<u>1.5</u>			Groundwater at 0.8mbgl	4	17 74						-
		reyish brown, mottled brow		<u>2.0</u> 2.5		X X X X X X X X X X X X X X X X X X X		4	20 67						-
	End of Bo	orehole (2.9mbgl) No Sam	ple Recovery	3.0		*****							_		_
	21 December 2127 2 ~ 12 p			4.0											-
-		CLAY SILT	SAND		GF	RAVEL		F F		orrected shea					
	Note: UTP = Unable To	Penetrate. T.S. = Topsoil. er test begins at base of be	0986							cala Penetron				•	

ENDC - Annroved Building Consent Document - EBC-2023-1243-0 - Pg 188 of 376 - 11/07/2023 - NZBTC

HAIGH WORKMANE Civil & Structural Engineers

Phone 09 407 8327 Fax 09 407 8378 www.haighworkman.co.nz

info@haighworkman.co.nz

Waipapa (Lot 1 DP 178287)/Engineering/Investigation/22 189_BH Logs

HAIGH WORKMANE Civil & Structural Engineers

 Phone
 09 407
 8327

 Fax
 09 407
 8378

 www.haighworkman.co.nz
 info@haighworkman.co.nz

	Borehole Log ·	- BH01	Hole Location: Ref	er to Si	te P	lan				JO	B No	-	21	1	31
тс	CLIENT: Date Started: Date Completed:	Windermere Holding 24/05/2021 24/05/2021	s Ltd SITE: DRILLING METHOD: HOLE DIAMETER (mm)	Kahik Hand 50mr	Au		ine, W	aipap	a (Lot 1 DP LOGGED E CHECKED	BY:	JP WT				
3 - NZBTC	B	Soil Descript ased on NZGS Logging Guid		Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Remould	Shear a ed Vane gths (kl	Shear		la Pen lows/		meter nm)
/202	SILT , trace fine gravel; [Topsoil]	brown to dark brown.	Stiff, moist, no plasticity. Rootlets	. 0.0	T.S.							05	10 15 2) 25 30	35 40
11/07/2023	SILT , some clay, trace orange. Stiff to very stif		to brown, mottled yellow and [Tauranga Group]	E		*****	at 1.6mbgl.	7							
376 -		d light grey. Very stiff,	sand; light brown to light dry to moist, low plasticity.	0.5		******	untered at		24		170				
190 of	From 0.8m: Trace clay.			1.0		x x x x x x x x x x x x x x x x x x x	Groundwater Encountered	1	9	97					
- Pg	SILT, trace fine gravel a no plasticity. From 1.4m: No gravel.	and coarse sand; light	grey to white. Firm to stiff, wet,		GROUP		Groundwa	9							
1243-(Ĵ			1.5	TAURANGA C		MV MV	Ū	6 55						
EBC-2023-1243-0	SILT, minor clay, trace no plasticity. (slightly dil		to white. Firm to stiff, saturated,	2.0	TAUI			15	3 46						
						X X X X X X X X X X X X X X X X X X X		3	21 7	3					
Document	SILT , trace fine gravel; plasticity. Gravel: weak		nd light grey. Firm, saturated, no	2.5		××××××× ××××××××××××××××××××××××××××××									
nsent Do	En	d of Hole at 3.0m (Tai	get Depth)	3.0		*****		11	33						
Conse				3.5											
Building															
				4.0											
Approved															
1.1				4.5											
FNDC															
	LEGEND	CLAY S	ILT SAND		GI	RAVEL		F	ILL	Remoulde	shear var ed shear va netrometer	ane rea	-		•
			ndwater Encountered at 1.6mb	gl at tim	ne o	f drillin	g.								

HAIGH WORKMANE Civil & Structural Engineers

 Phone
 09 407
 8327

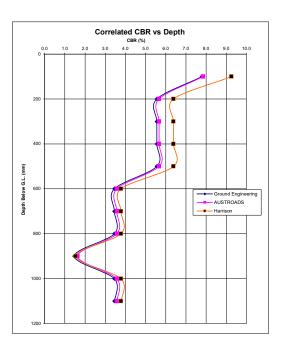
 Fax
 09 407
 8378

 www.haighworkman.co.nz
 info@haighworkman.co.nz

	Borehole Log - BH02 Hole Location: Refe	r to Si	te P	lan				JOB No	o. 21	13	31
NZBTC	CLIENT:Windermere Holdings LtdSITE:Date Started:24/05/2021DRILLING METHOD:Date Completed:24/05/2021HOLE DIAMETER (mm)	Kahil Hanc 50mr	l Au		ine, W		a (Lot 1 DP ⁻ LOGGED B CHECKED	JP			
	Soil Description Based on NZGS Logging Guidelines 2005	Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Remoulde	Shear and ed Vane Shear gths (kPa)	Scala Pen (blows/		
11/07/2023	SILT; brown to dark brown. Stiff, moist, low plasticity. Rootlets. [Topsoil]	0.0	T.S.	ま (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	tered at				0 5 10 15 20	25 30 3	5 40
	SILT , minor clay; light brown to brown, mottled orange. Stiff to very stiff, moist, low to medium plasticity. [Tauranga Group]	0.5	-	*****	iter Encoun 1.2mbgl.	5	15	82			
of 376	From 0.7m: Becomes light brown to greyish brown, mottled orange. Trace fine gravel (weakly cemented). SILT, trace clay, trace fine gravel; light brown to light grey, streaked orange.				Groundwater Encountered at 1.2mbgl.	8					
Pg 191	Very stiff, wet, no plasticity. Gravel: weakly cemented.	1.0		×××××× ××××××× ×××××××××××××××××××××××	∿∦ ^G r		15	118			
	From 1.3m: Becomes light grey, mottled light brown, streaked orange.	1.5	A GROUP	××××××××××××××××××××××××××××××××××××××		9	15	131			
23-124	SILT , minor fine to medium gravel; brown to dark brown. Very stiff, moist, no plasticity. Gravel: weakly cemented. From 1.9m: Becomes light brown, mottled dark brown and white.		FAURANGA			18					
EBC-2023-1243-0	SILT, minor fine to coarse sand; light grey to bluish grey. Stiff, saturated, no plasticity.	2.0		×××××× ×××××× ×××××× ×××××× ×××××× ×××××		Ļ	6	106			
	From 2.4m: Poor sample recovery. Sample saturated.	2.5	-	***** ********************************		5	12 6	51			
Document				*****		5		82			
Consent D	End of Hole at 3.0m (Target Depth)	3.0					15				
g Con		3.5									_
Building											
		4.0									
- Approved		4.5									
FNDC											
			GI	RAVEL		FI	ILL f	Corrected shear var Remoulded shear va Scala Penetrometer	ane reading	•	
	Note: UTP = Unable to penetrate. T.S. = Topsoil. Hand Held Shear Vane S/N: 2278. Groundwater Encountered at 1.2mbgl Scala penetrometer testing not undertaken.	l at tin	ne o	f drillin	g.						

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 1/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 1


Location: Kahikatearoa Lane, Waipapa

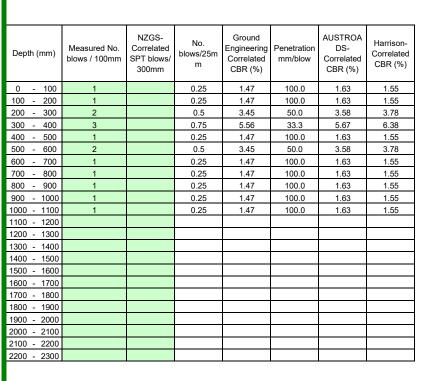
Test Date: 13/01/2023

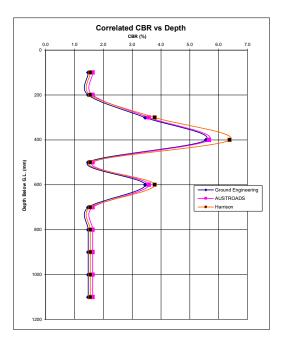
Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	4		1	7.80	25.0	7.85	9.25
100 - 200	3		0.75	5.56	33.3	5.67	6.38
200 - 300	3		0.75	5.56	33.3	5.67	6.38
300 - 400	3		0.75	5.56	33.3	5.67	6.38
400 - 500	3		0.75	5.56	33.3	5.67	6.38
500 - 600	2		0.5	3.45	50.0	3.58	3.78
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	1		0.25	1.47	100.0	1.63	1.55
900 - 1000	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Test Number: 2

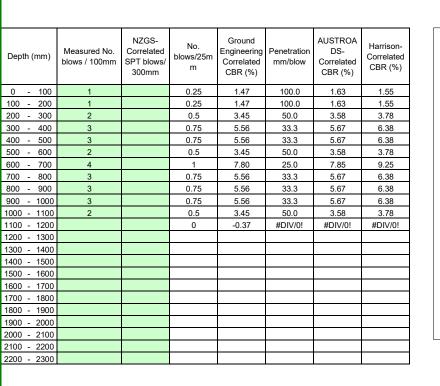

Location: Kahikatearoa Lane, Waipapa

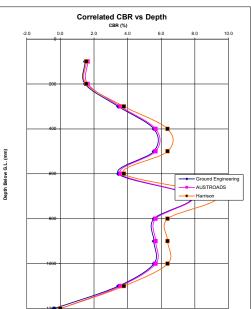

Test Date: 13/01/2023

Site: Lot 7 / 8

/ 8

Tested By: CN


Test Number: 3


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Test Number: 4

Location: Kahikatearoa Lane, Waipapa

AUSTROA

DS-

Correlated

CBR (%)

1.63

3.58

3.58

3.58

3.58

3 58

3.58

3.58

3.58

5.67

3.58

Harrison-

Correlated

CBR (%)

1.55

3.78

3.78

3.78

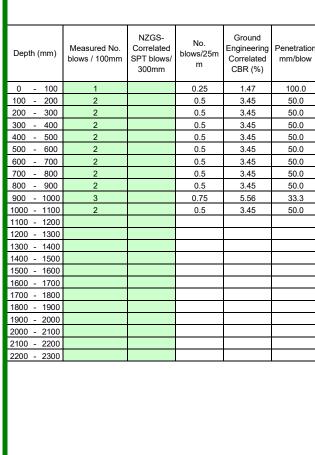
3.78

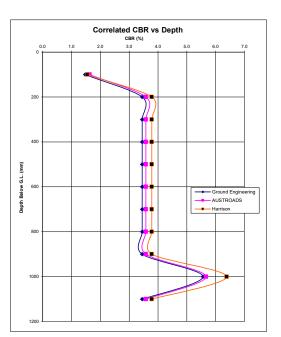
3 78

3.78

3.78

3.78


6.38


3.78

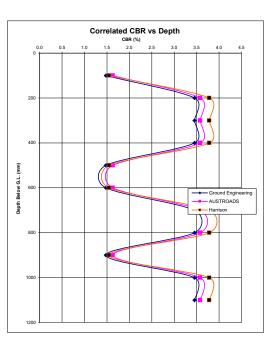
Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Test Number: 5

Location: Kahikatearoa Lane, Waipapa


Test Date: 13/01/2023

Site: Lot 7 / 8

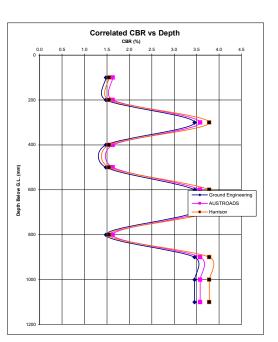
7/8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	2		0.5	3.45	50.0	3.58	3.78
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	1		0.25	1.47	100.0	1.63	1.55
500 - 600	1		0.25	1.47	100.0	1.63	1.55
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	1		0.25	1.47	100.0	1.63	1.55
900 - 1000	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 6/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 6


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

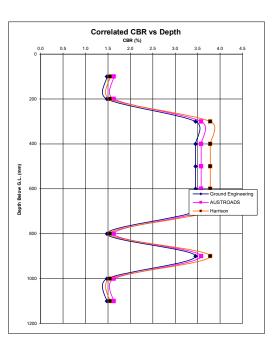
Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	1		0.25	1.47	100.0	1.63	1.55
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	1		0.25	1.47	100.0	1.63	1.55
400 - 500	1		0.25	1.47	100.0	1.63	1.55
500 - 600	2		0.5	3.45	50.0	3.58	3.78
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	1		0.25	1.47	100.0	1.63	1.55
800 - 900	2		0.5	3.45	50.0	3.58	3.78
900 - 1000	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Test Number: 7

Location: Kahikatearoa Lane, Waipapa


Test Date: 13/01/2023

Site: Lot 7 / 8

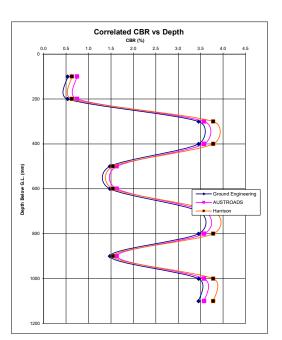
3

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	1		0.25	1.47	100.0	1.63	1.55
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	2		0.5	3.45	50.0	3.58	3.78
500 - 600	2		0.5	3.45	50.0	3.58	3.78
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	1		0.25	1.47	100.0	1.63	1.55
800 - 900	2		0.5	3.45	50.0	3.58	3.78
900 - 1000	1		0.25	1.47	100.0	1.63	1.55
1000 - 1100	1		0.25	1.47	100.0	1.63	1.55
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 8/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 8


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

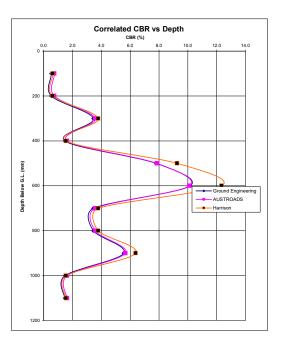
Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	0.5		0.125	0.53	200.0	0.74	0.63
100 - 200	0.5		0.125	0.53	200.0	0.74	0.63
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	1		0.25	1.47	100.0	1.63	1.55
500 - 600	1		0.25	1.47	100.0	1.63	1.55
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	1		0.25	1.47	100.0	1.63	1.55
900 - 1000	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 9/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 9


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

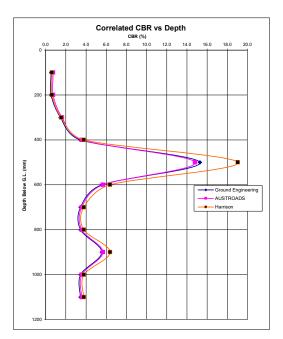
Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	0.5		0.125	0.53	200.0	0.74	0.63
100 - 200	0.5		0.125	0.53	200.0	0.74	0.63
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	1		0.25	1.47	100.0	1.63	1.55
400 - 500	4		1	7.80	25.0	7.85	9.25
500 - 600	5		1.25	10.16	20.0	10.11	12.34
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	3		0.75	5.56	33.3	5.67	6.38
900 - 1000	1		0.25	1.47	100.0	1.63	1.55
1000 - 1100	1		0.25	1.47	100.0	1.63	1.55
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600		-					
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 10/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 10


Location: Kahikatearoa Lane, Waipapa

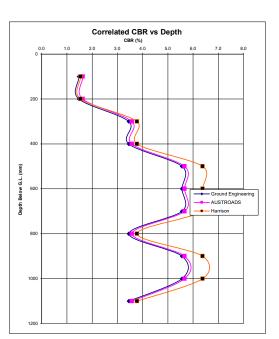
Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

				-			
Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	0.5		0.125	0.53	200.0	0.74	0.63
100 - 200	0.5		0.125	0.53	200.0	0.74	0.63
200 - 300	1		0.25	1.47	100.0	1.63	1.55
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	7		1.75	15.28	14.3	14.81	19.04
500 - 600	3		0.75	5.56	33.3	5.67	6.38
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	3		0.75	5.56	33.3	5.67	6.38
900 - 1000	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Test Number: 11


Location: Kahikatearoa Lane, Waipapa

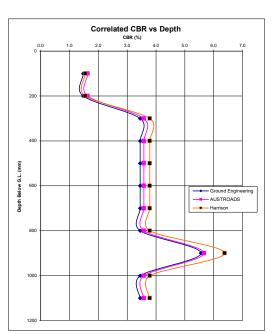
Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	1		0.25	1.47	100.0	1.63	1.55
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	3		0.75	5.56	33.3	5.67	6.38
500 - 600	3		0.75	5.56	33.3	5.67	6.38
600 - 700	3		0.75	5.56	33.3	5.67	6.38
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	3		0.75	5.56	33.3	5.67	6.38
900 - 1000	3		0.75	5.56	33.3	5.67	6.38
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Test Number: 12


Location: Kahikatearoa Lane, Waipapa

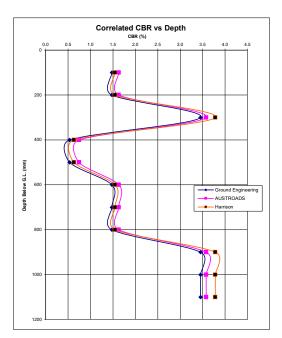
Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 13/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 13


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

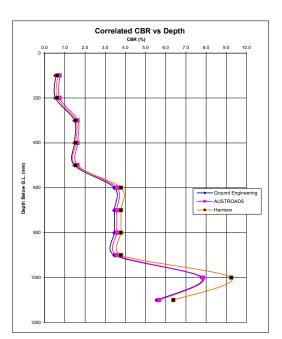
Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	1		0.25	1.47	100.0	1.63	1.55
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	0.5		0.125	0.53	200.0	0.74	0.63
400 - 500	0.5		0.125	0.53	200.0	0.74	0.63
500 - 600	1		0.25	1.47	100.0	1.63	1.55
600 - 700	1		0.25	1.47	100.0	1.63	1.55
700 - 800	1		0.25	1.47	100.0	1.63	1.55
800 - 900	2		0.5	3.45	50.0	3.58	3.78
900 - 1000	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 14/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 14


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	0.5		0.125	0.53	200.0	0.74	0.63
100 - 200	0.5		0.125	0.53	200.0	0.74	0.63
200 - 300	1		0.25	1.47	100.0	1.63	1.55
300 - 400	1		0.25	1.47	100.0	1.63	1.55
400 - 500	1		0.25	1.47	100.0	1.63	1.55
500 - 600	2		0.5	3.45	50.0	3.58	3.78
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	2		0.5	3.45	50.0	3.58	3.78
900 - 1000	4		1	7.80	25.0	7.85	9.25
1000 - 1100	3		0.75	5.56	33.3	5.67	6.38
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Test Number: 15

Location: Kahikatearoa Lane, Waipapa

AUSTROA

DS-

Correlated

CBR (%)

1.63

1.63

1.63

1.63

1.63

1.63

3.58

3.58

3.58

1.63

0.74

Harrison-

Correlated

CBR (%)

1.55 1.55

1.55

1.55

1.55

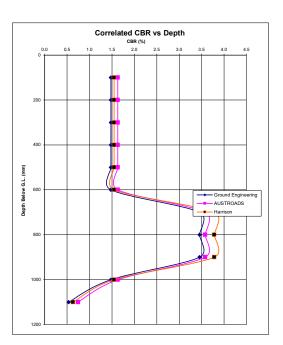
1 55

3.78

3.78

3.78

1.55


0.63

Test Date: 13/01/2023

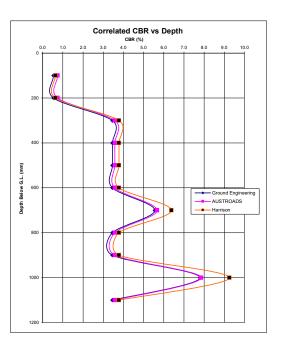
Site: Lot 7 / 8

Tested By: CN

	Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow
	0 - 100	1		0.25	1.47	100.0
	100 - 200	1		0.25	1.47	100.0
	200 - 300	1		0.25	1.47	100.0
	300 - 400	1		0.25	1.47	100.0
	400 - 500	1		0.25	1.47	100.0
	500 - 600	1		0.25	1.47	100.0
	600 - 700	2		0.5	3.45	50.0
	700 - 800	2		0.5	3.45	50.0
2	800 - 900	2		0.5	3.45	50.0
	900 - 1000	1		0.25	1.47	100.0
	1000 - 1100	0.5		0.125	0.53	200.0
	1100 - 1200					
	1200 - 1300					
	1300 - 1400					
	1400 - 1500					
	1500 - 1600					
	1600 - 1700					
	1700 - 1800					
	1800 - 1900					
	1900 - 2000					
	2000 - 2100					
	2100 - 2200					
	2200 - 2300					

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 16/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 16


Location: Kahikatearoa Lane, Waipapa

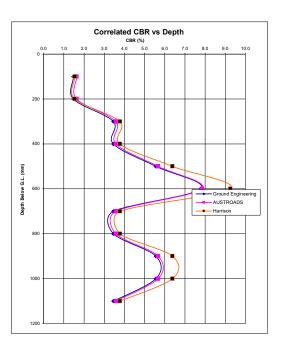
Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Depth (mm) Measured No. blows / 100mm NZGS- Correlated SPT blows/ 300mm No. m Ground Engineering Correlated CBR (%) Penetration Penetration Correlated CBR (%) Harrison- Correlated CBR (%) 0 - 100 0.5 0.125 0.53 200.0 0.74 0.63 100 - 200 0.5 0.125 0.53 200.0 0.74 0.63 200 - 300 2 0.5 3.45 50.0 3.58 3.78 300 - 400 2 0.5 3.45 50.0 3.58 3.78 300 - 600 2 0.5 3.45 50.0 3.58 3.78 500 - 600 2 0.5 3.45 50.0 3.58 3.78 600 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 2.0 7.55		[r	r	r	r	r	r
100 - 200 0.5 0.125 0.53 200.0 0.74 0.63 200 - 300 2 0.5 3.45 50.0 3.58 3.78 300 - 400 2 0.5 3.45 50.0 3.58 3.78 300 - 400 2 0.5 3.45 50.0 3.58 3.78 400 - 500 2 0.5 3.45 50.0 3.58 3.78 500 - 600 2 0.5 3.45 50.0 3.58 3.78 600 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1300 - 1400 <	Depth (mm)		Correlated SPT blows/	blows/25m	Engineering Correlated		DS- Correlated	Correlated
200 - 300 2 0.5 3.45 50.0 3.58 3.78 300 - 400 2 0.5 3.45 50.0 3.58 3.78 400 - 500 2 0.5 3.45 50.0 3.58 3.78 500 - 600 2 0.5 3.45 50.0 3.58 3.78 500 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 1300 - 1400	0 - 100	0.5		0.125	0.53	200.0	0.74	0.63
300 - 400 2 0.5 3.45 50.0 3.58 3.78 400 - 500 2 0.5 3.45 50.0 3.58 3.78 500 - 600 2 0.5 3.45 50.0 3.58 3.78 600 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 1300 - 1400	100 - 200	0.5		0.125	0.53	200.0	0.74	0.63
400 - 500 2 0.5 3.45 50.0 3.58 3.78 500 - 600 2 0.5 3.45 50.0 3.58 3.78 600 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 1200 - 1300 1400 - 1500	200 - 300	2		0.5	3.45	50.0	3.58	3.78
500 - 600 2 0.5 3.45 50.0 3.58 3.78 600 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 11200 - 1300 2 0.5 3.45 50.0 3.58 3.78 11200 - 1300 2 2 0.5 3.45 50.0 3.58 3.78 11300 - 1400 2 2 2 2 2 2 2 2 2 2 2 2	300 - 400	2		0.5	3.45	50.0	3.58	3.78
600 - 700 3 0.75 5.56 33.3 5.67 6.38 700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 11200 - 1300 2 2 0.5 3.45 50.0 3.58 3.78 11300 - 1400 2	400 - 500	2		0.5	3.45	50.0	3.58	3.78
700 - 800 2 0.5 3.45 50.0 3.58 3.78 800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 2 0.5 3.45 50.0 3.58 3.78 11300 - 1400 2 <t< td=""><td>500 - 600</td><td>2</td><td></td><td>0.5</td><td>3.45</td><td>50.0</td><td>3.58</td><td>3.78</td></t<>	500 - 600	2		0.5	3.45	50.0	3.58	3.78
800 - 900 2 0.5 3.45 50.0 3.58 3.78 900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 2 0.5 3.45 50.0 3.58 3.78 1200 - 1300 2 0.5 3.45 50.0 3.58 3.78 1200 - 1300 2 0.5 3.45 50.0 3.58 3.78 1300 - 1400 2 0.5 3.45 50.0 3.58 3.78 1400 - 1500 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3.45 5 3.58 3.78 1200 - 1300 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	600 - 700	3		0.75	5.56	33.3	5.67	6.38
900 - 1000 4 1 7.80 25.0 7.85 9.25 1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 1200 - 1300	700 - 800	2		0.5	3.45	50.0	3.58	3.78
1000 - 1100 2 0.5 3.45 50.0 3.58 3.78 1100 - 1200 </td <td>800 - 900</td> <td>2</td> <td></td> <td>0.5</td> <td>3.45</td> <td>50.0</td> <td>3.58</td> <td>3.78</td>	800 - 900	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200	900 - 1000	4		1	7.80	25.0	7.85	9.25
1200 - 1300 Image: state s	1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1300 - 1400 Image: Constraint of the state of the	1100 - 1200							
1400 - 1500 Image: state s	1200 - 1300							
1500 - 1600 Image: Constraint of the second sec	1300 - 1400							
1600 - 1700 Image: Constraint of the second sec								
1700 - 1800 Image: Constraint of the second sec	1500 - 1600							
1800 - 1900 Image: Constraint of the second sec	1600 - 1700							
1900 - 2000								
2000 - 2100 2000 2100 2000 2100 2000	1800 - 1900							
2100 - 2200	1900 - 2000							
	2000 - 2100							
2200 - 2300	2100 - 2200							
	2200 - 2300							

Test Number: 17


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

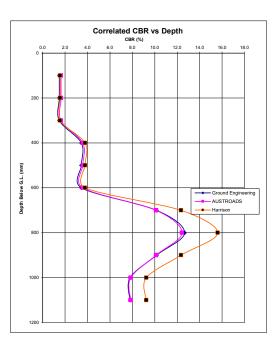
Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	1		0.25	1.47	100.0	1.63	1.55
200 - 300	2		0.5	3.45	50.0	3.58	3.78
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	3		0.75	5.56	33.3	5.67	6.38
500 - 600	4		1	7.80	25.0	7.85	9.25
600 - 700	2		0.5	3.45	50.0	3.58	3.78
700 - 800	2		0.5	3.45	50.0	3.58	3.78
800 - 900	3		0.75	5.56	33.3	5.67	6.38
900 - 1000	3		0.75	5.56	33.3	5.67	6.38
1000 - 1100	2		0.5	3.45	50.0	3.58	3.78
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Client:	Peter Swan Limited		Project/Task No: 22 189
Subject:	CBR Scala Penetrometer		Date: 16/01/2023
By:	CN	Date: 16/01/2023	Sheet: 18/19
Verified By:	WT	Date: 16/01/2023	

Test Number: 18


Location: Kahikatearoa Lane, Waipapa

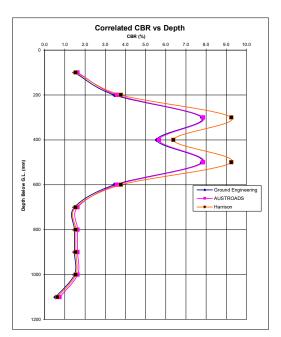
Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	1		0.25	1.47	100.0	1.63	1.55
200 - 300	1		0.25	1.47	100.0	1.63	1.55
300 - 400	2		0.5	3.45	50.0	3.58	3.78
400 - 500	2		0.5	3.45	50.0	3.58	3.78
500 - 600	2		0.5	3.45	50.0	3.58	3.78
600 - 700	5		1.25	10.16	20.0	10.11	12.34
700 - 800	6		1.5	12.66	16.7	12.43	15.61
800 - 900	5		1.25	10.16	20.0	10.11	12.34
900 - 1000	4		1	7.80	25.0	7.85	9.25
1000 - 1100	4		1	7.80	25.0	7.85	9.25
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Test Number: 19


Location: Kahikatearoa Lane, Waipapa

Test Date: 13/01/2023

Site: Lot 7 / 8

Tested By: CN

Depth (mm)	Measured No. blows / 100mm	NZGS- Correlated SPT blows/ 300mm	No. blows/25m m	Ground Engineering Correlated CBR (%)	Penetration mm/blow	AUSTROA DS- Correlated CBR (%)	Harrison- Correlated CBR (%)
0 - 100	1		0.25	1.47	100.0	1.63	1.55
100 - 200	2		0.5	3.45	50.0	3.58	3.78
200 - 300	4		1	7.80	25.0	7.85	9.25
300 - 400	3		0.75	5.56	33.3	5.67	6.38
400 - 500	4		1	7.80	25.0	7.85	9.25
500 - 600	2		0.5	3.45	50.0	3.58	3.78
600 - 700	1		0.25	1.47	100.0	1.63	1.55
700 - 800	1		0.25	1.47	100.0	1.63	1.55
800 - 900	1		0.25	1.47	100.0	1.63	1.55
900 - 1000	1		0.25	1.47	100.0	1.63	1.55
1000 - 1100	0.5		0.125	0.53	200.0	0.74	0.63
1100 - 1200							
1200 - 1300							
1300 - 1400							
1400 - 1500							
1500 - 1600							
1600 - 1700							
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							

Please reply to: W.E. Campton

Haigh Workman Ltd. PO Box 89 Kerikeri 0245

Attention: JOHN POWER

Babbage Geotechnical LaboratoryLevel 468 Beach RoadP O Box 2027Auckland 1010New ZealandTelephone64-9-367 4954E-mailwec@babbage.co.nz

Page 1 of 3

Job Number: 63632#L BGL Registration Number: 2828 Checked by: WEC

16th June 2021

ATTERBERG LIMITS & LINEAR SHRINKAGE TESTING

Dear John,

Re: LOT 1, KAHIKATEAROA LANE, WAIPAPA Your Reference: Job # 21 131 Report Number: 63632#L/AL Kahikatearoa

The following report presents the results of Atterberg Limits & Linear Shrinkage testing at BGL of a soil sample delivered to this laboratory on the 9th of June 2021. Test results are summarised below, with page 3 showing

where the sample plots on the Unified Soil Classification System (Casagrande) Chart. Test standards used were:

Water Content:	NZS4402:1986:Test 2.1
Liquid Limit:	NZS4402:1986:Test 2.2
Plastic Limit:	NZS4402:1986:Test 2.3
Plasticity Index:	NZS4402:1986:Test 2.4
Linear Shrinkage:	NZS4402:1986:Test 2.6

Borehole Number	Sample Number	Depth (m)	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	Linear Shrinkage (%)
BH01	BAG	0.50 – 1.00	62.7	69	55	14	10

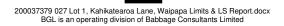
The whole soil was used for the water content test (the soil was in a natural state), and for the liquid limit, plastic limit and linear shrinkage tests. The soil was wet up and dried where required for the liquid limit, plastic limit and linear shrinkage tests.

As per the reporting requirements of NZS4402: 1986: Test 2.1: water content is reported to two significant figures for values below 10%, and to three significant figures for values of 10% or greater. Test 2.2: liquid limit, test 2.3: plastic limit, and test 2.6: linear shrinkage are reported to the nearest whole number.

Job Number: 63632#L 16th June 2021 Page 2 of 3

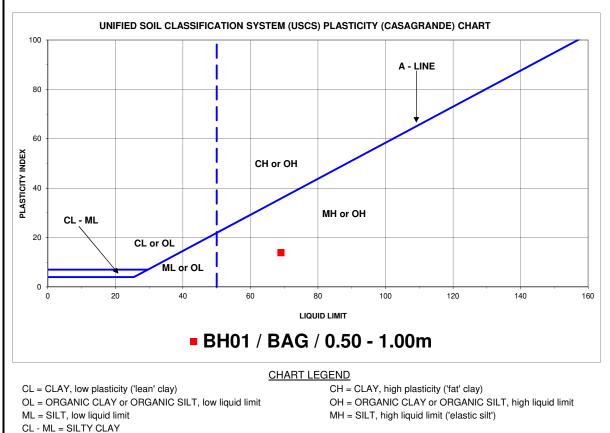
Please note that the test results relate only to the sample as-received, and relate only to the sample under test.

Thank you for the opportunity to carry out this testing. If you have any queries regarding the content of this report please contact the person authorising this report below at your convenience.


Yours faithfully,

Justin Franklin Signatory (Assistant Laboratory Manager) Babbage Geotechnical Laboratory

CCREDITED


All tests reported herein have been performed in accordance with the laboratory's scope of accreditation. This report may not be reproduced except in full & with written approval from BGL.

	Job Number:	63632#L	Sheet	1 of 1	Page 3 of 3
BGL	Reg. Number:	2828	Versio	on No:	6
	Report No:	63632#L/AL Kahikatearoa	Versio	n Date:	September 2018
Babbage Geotechnical	Project:	LOT 1, KA	HIKATE	AROA L	.ANE,
Laboratory	FIOJECI.		WAIPAF	ΡΑ	
DETERMINATION OF TH	E LIQUID L	IMIT, PLASTIC	Tested By:	JW	June 2021
LIMIT & THE PLASTICIT	Compiled By:	JF	16/06/2021		
Test Methods: NZS4402: 1986: Test 2.2, Test 2.3 and Test 2.4			Checked By:	JF	16/06/2021

SUMMARY OF TESTING								
Borehole Number	Sample Number	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Soil Classification Based on USCS Chart Below		
BH01	BAG	0.50 - 1.00	69	55	14	МН		

The chart below & soil classification terminology is taken from ASTM D2487-17 "Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)", January 2018, & is based on the classification scheme developed by A. Casagrande in the 1940's (Casagrande, A., 1948: Classification and identification of soil. Transactions of the American Society of Civil Engineers, v. 113, p. 901-930). The chart below & the soil classification given in the table above are included for your information only, and are not included in the IANZ endorsement for this report.

U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation
	Test Hole Number	CPT01	Job Identifier	HG Kowhai Falls, Warkworth
ပ	Test Date	24/05/2021	Operator	Craig Greenfield
ZBT	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa
3 - N	Cone Serial Number	5233	Battery Voltage Start	6.4
202;	Start Recording	10:26:00 AM	Finish Recording	10:43:00 AM
214 of 376 - 11/07/2023 - NZBTC	Tip Area	10cm	Ground Water Depth	1.3
3 - 1	Cone Area Ratio	0.838	Total Penetration Depth (m)	8.217
f 376	Probe Radius	0.018	Metres To Next Calibration	149
14 o	Data Interval	10mm	Test ended due to:	Tip Pressure
Pg 2		Zero Value Cl	nange % FSO	
<u>ч</u>		Point Resistance	Pore Pressure	Sleeve Friction
BC-2023-1243ឆ្នា	of test with tip loosened	0.07%	0.01%	0.44%
-12	Test No	Dissipatio		Comments
023		Depth (m)	Duration (secs)	Comments
3C 22				
Ш				
ant		Notes and	Comments	
ш		dc	fs	u
00				
ser				
uo l				
) gr				
ldir				
Bui				
ed				
lo Vo				
Approved Building Consent Documen				
С				
FNDC				

U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation
	Test Hole Number	CPT02	Job Identifier	HG Kowhai Falls, Warkworth
Q	Test Date	24/05/2021	Operator	Craig Greenfield
ZBT	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa
3 - N	Cone Serial Number	5343	Battery Voltage Start	6.32
202;	Start Recording	11:07:00 AM	Finish Recording	11:16:00 AM
376 - 11/07/2023 - NZBTC	Tip Area	10cm	Ground Water Depth	0.9
- 1	Cone Area Ratio	0.852	Total Penetration Depth (m)	2.63
f 37(Probe Radius	0.0179	Metres To Next Calibration	858
215 of	Data Interval	10mm	Test ended due to:	Anchor Failure
Pg 2		Zero Value Cl	nange % FSO	
۹.		Point Resistance	Pore Pressure	Sleeve Friction
Pino C T	of test with tip loosened	0.04%	0.02%	0.06%
12	Test No	Dissipatio		Comments
023		Depth (m)	Duration (secs)	Comments
BC-2023-1243				
Ü				
snt		Notes and	Comments	
nt Docum		qc	fs	u
lding Conser				
Approved Building Consent Documen				
FNDC -				,

U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation
	Test Hole Number	CPT03	Job Identifier	HG Kowhai Falls, Warkworth
O	Test Date	24/05/2021	Operator	Craig Greenfield
ZBT	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa
3 - N	Cone Serial Number	5233	Battery Voltage Start	6.29
202;	Start Recording	11:49:00 AM	Finish Recording	11:59:00 AM
376 - 11/07/2023 - NZBTC	Tip Area	10cm	Ground Water Depth	0.6
. 1	Cone Area Ratio	0.848	Total Penetration Depth (m)	2.59
f 37(Probe Radius	0.018	Metres To Next Calibration	141
16 of	Data Interval	10mm	Test ended due to:	Anchor Failure
g 21		Zero Value Cl		
<u>م</u>		Point Resistance	Pore Pressure	Sleeve Friction
2023-1243 ₅₀	of test with tip loosened	0.11%	0.00%	0.34%
12	Test Ne	Dissipatio	-	Commonte
023	Test No	Depth (m)	Duration (secs)	Comments
BC 2				
Ü,				
n		Notes and	Comments	
onsent Docum		dc	fs	u
C				
FNDC				

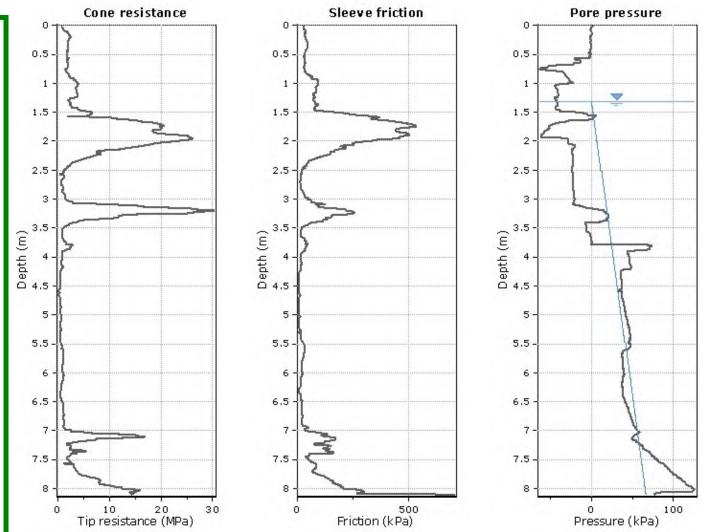
U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation				
	Test Hole Number	CPT04	Job Identifier	HG Kowhai Falls, Warkworth				
U	Test Date	24/05/2021	Operator	Craig Greenfield				
376 - 11/07/2023 - NZBTC	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa				
3 - N	Cone Serial Number	5325	Battery Voltage Start	6.24				
202;	Start Recording	12:20:00 PM	Finish Recording	12:30:00 PM				
1/0/1	Tip Area	10cm	Ground Water Depth	0.7				
6 - 1	Cone Area Ratio	0.867	Total Penetration Depth (m)	2.767				
f 37(Probe Radius	0.018	Metres To Next Calibration	1076				
217 of	Data Interval	10mm	Test ended due to:	Anchor Failure				
Pg 2		Zero Value Ch	-					
•	of test with tip loosened	Point Resistance 0.10%	Pore Pressure 0.00%	Sleeve Friction 0.60%				
243	Dissipation Testing							
23-1	Test No	Depth (m)	Duration (secs)	Comments				
BC-2023-1243ឆ្នា								
Ŭ Ŭ I								
		Notes and	Comments					
um		qc	fs	u				
Do								
sent								
Con								
ing (
uild								
ed B								
Approved Building Consent Docum <mark>e</mark> n								
App								
FNDC .								

U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation	
	Test Hole Number	CPT05	Job Identifier	HG Kowhai Falls, Warkworth	
O	Test Date	24/05/2021	Operator	Craig Greenfield	
218 of 376 - 11/07/2023 - NZBTC	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa	
3 - N	Cone Serial Number	5233	Battery Voltage Start	6.23	
/202;	Start Recording	1:19:00 PM	Finish Recording	1:33:00 PM	
1/07/	Tip Area	10cm	Ground Water Depth	1.3	
6 - 1	Cone Area Ratio	0.838	Total Penetration Depth (m)	6.63	
f 37	Probe Radius	0.018	Metres To Next Calibration	139	
18 o	Data Interval	10mm	Test ended due to:	Anchor Failure	
Pg 2		Zero Value Cl	-		
		Point Resistance	Pore Pressure	Sleeve Friction	
BC-2023-1243g	of test with tip loosened	0.07% Dissipatio	0.07%	0.00%	
3-12	Test No	Depth (m)	Duration (secs)	Comments	
202					
ВĊ					
ш					
hent	Notes and Comments				
nt Docum		qc 1.36 1.37	fs	u	
2					
FNDC					

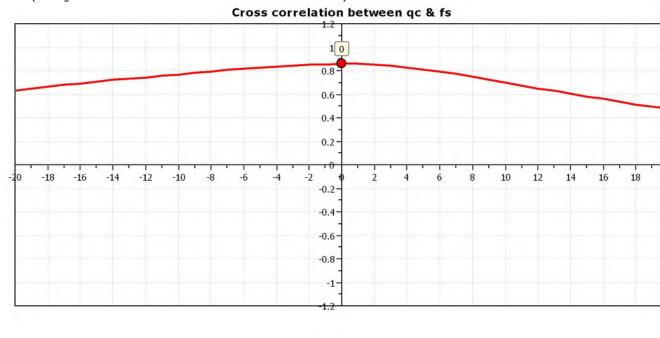
U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation
	Test Hole Number	CPT06	Job Identifier	HG Kowhai Falls, Warkworth
Ö	Test Date	24/05/2021	Operator	Craig Greenfield
ZBT	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa
3 - N	Cone Serial Number	5233	Battery Voltage Start	6.18
202;	Start Recording	1:57:00 PM	Finish Recording	2:06:00 PM
219 of 376 - 11/07/2023 - NZBTC	Tip Area	10cm	Ground Water Depth	0.7
3 - 1 ,	Cone Area Ratio	0.838	Total Penetration Depth (m)	2.665
f 37(Probe Radius	0.018	Metres To Next Calibration	132
19 o	Data Interval	10mm	Test ended due to:	Anchor Failure
g 2		Zero Value Cl	nange % FSO	
- Pg		Point Resistance	Pore Pressure	Sleeve Friction
Pino C	of test with tip loosened	0.10%	0.06%	0.72%
12	T	Dissipatio		
023	Test No	Depth (m)	Duration (secs)	Comments
BC-2023-1243g				
Ë,				
ju j		Notes and	Comments	
Approved Building Consent Docum <mark>e</mark> n		dc	fs	U
FNDC -				

U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation
	Test Hole Number	CPT07	Job Identifier	HG Kowhai Falls, Warkworth
<u></u>	Test Date	24/05/2021	Operator	Craig Greenfield
ZBT	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa
3 - 2	Cone Serial Number	5446	Battery Voltage Start	6.15
202;	Start Recording	2:27:00 PM	Finish Recording	2:40:00 PM
1/0/1	Tip Area	10cm	Ground Water Depth	1.2
220 of 376 - 11/07/2023 - NZBTC	Cone Area Ratio	0.846	Total Penetration Depth (m)	6.49
f 37(Probe Radius	0.018	Metres To Next Calibration	1438
20 o	Data Interval	10mm	Test ended due to:	Anchor Failure/Tilt
Pg 2		Zero Value Cl	nange % FSO	
<u>م</u>		Point Resistance	Pore Pressure	Sleeve Friction
	of test with tip loosened	0.08%	0.01%	0.86%
12	T (N)	Dissipatio		
023	Test No	Depth (m)	Duration (secs)	Comments
BC-2023-1243g				
Ü,				
Ju Su		Notes and	Comments	
Approved Building Consent Docum <mark>e</mark> n		dc	fs	U
FNDC -				

U	N D E R G R O U N D INVESTIGATION	СРТ	Test Informa	ation	
	Test Hole Number	CPT08	Job Identifier	HG Kowhai Falls, Warkworth	
U	Test Date	24/05/2021	Operator	Craig Greenfield	
NZBTC	CPT Rig Type	Georig 220 with Screw Anchors	Cone Type	Nova Cone 100MPa	
	Cone Serial Number	5233	Battery Voltage Start	6.12	
2023	Start Recording	2:56:00 PM	Finish Recording	3:52:00 PM	
- 11/07/2023	Tip Area	10cm	Ground Water Depth	1.7	
	Cone Area Ratio	0.838	Total Penetration Depth (m)	7.275	
f 376	Probe Radius	0.018	Metres To Next Calibration	129	
221 of	Data Interval	10mm	Test ended due to:	Anchor Failure	
5		Zero Value C	hange % FSO		
Pg		Point Resistance	Pore Pressure	Sleeve Friction	
- ອີກເ ເຕັ	of test with tip loosened	0.11%	0.04%	0.78%	
24	Dissipation Testing				
3-1	Test No	Depth (m)	Duration (secs)	Comments	
BC-2023-1243∯	D1	5.572	2134s	0.06	
С В					
ш					
ent	Notes and Comments				
Approved Building Consent Docum		dc	fs	u	
FNDC Approved B					



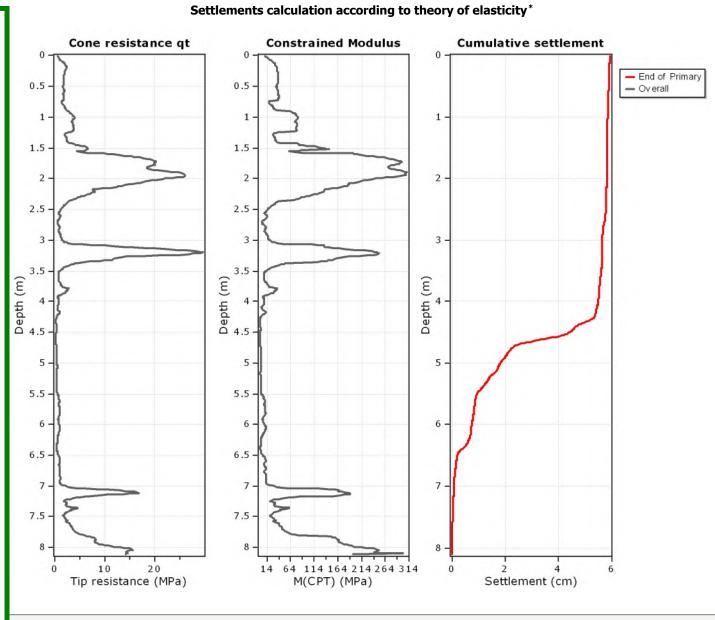
Project: Windermere Engergy Ltd Location: Kerikeri


FNDC - Approved Building Consent Document - EBC-2023-1243-0 - Pg 222 of 376 - 11/07/2023 - NZBTC

Total depth: 8.11 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown

CPT: CPT01

The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT measurements).



Windermere Engergy Ltd

Project:

Location: Kerikeri

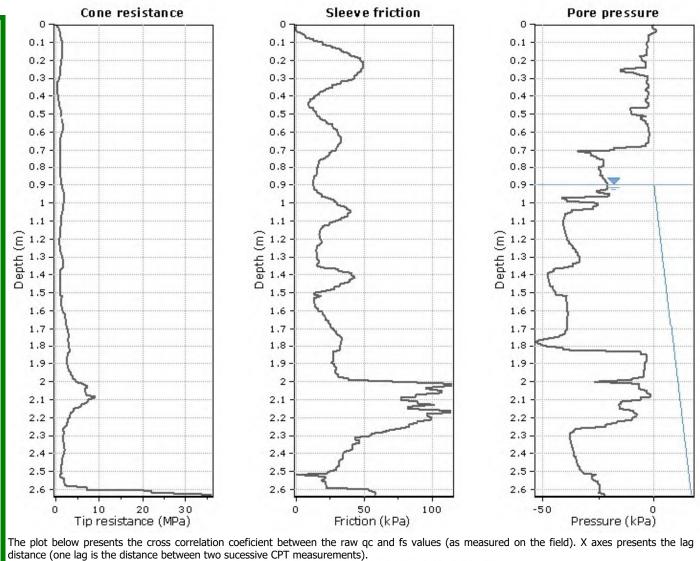
Total depth: 8.11 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown

Calculation properties

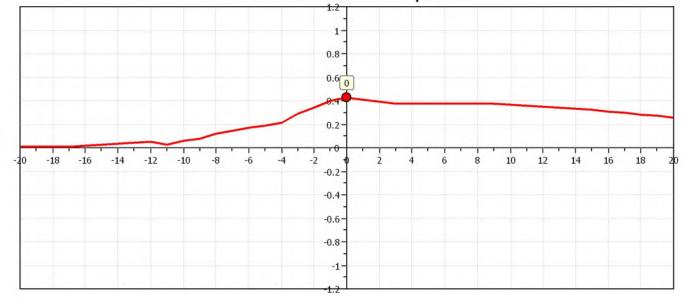
* Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_{v}}{M_{CPT}} \Delta z$$

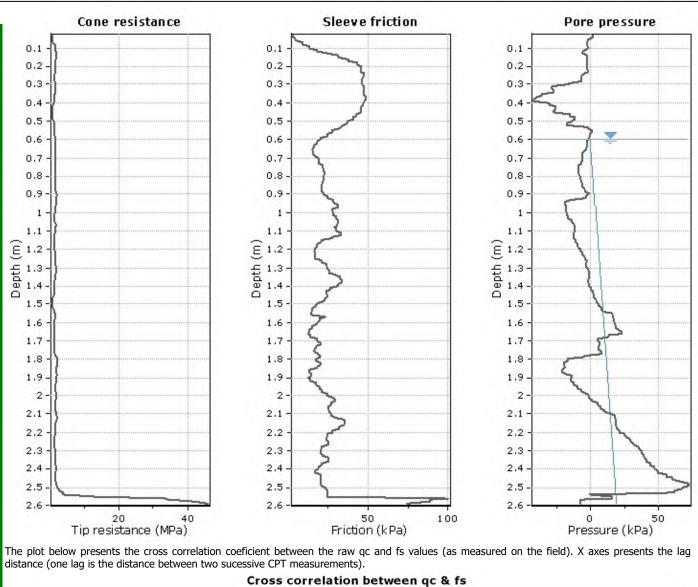
* Secondary (creep) settlements calculation is performed according to the following formula:

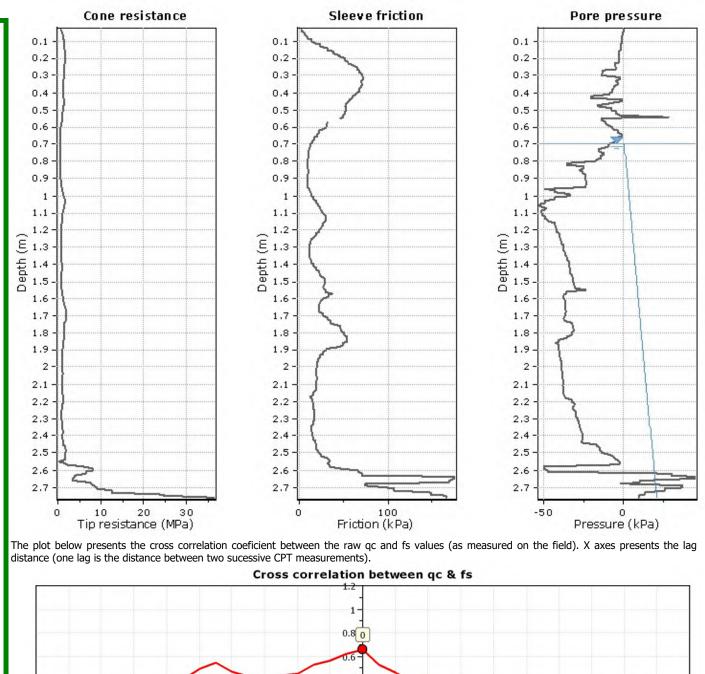

$$\mathbf{S} = C_a \cdot \Delta z \cdot \log(t)$$

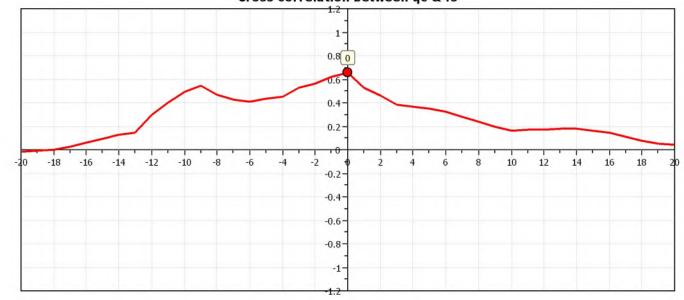
Footing type: Rectangular Footing width: 40.00 (m) L/B: 1.0 Footing pressure: 30.00 (kPa) Embedment depth: 0.00 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A Second. settlement: Secondary settlemends due to creep


	:: Tabula	r results ::									
	Point No	Start depth (m)	End depth (m)	Thickness (m)	Relative depth (m)	Delta P (kPa)	M _(CPT) (MPa)	Iz	Settlement (cm)	Second. settlement (cm)	Overall settlement (cm)
									tal primary I secondary		
								Total	calculated	settlemer	nt: 5.93
	Abbrev	viations									
	Start de End de		•	,		•	sured from g		,		
	Thickne										
	Relative depth: Depth of calculation relative to footing										
	Iz: Delta P		Stress influ	ence factor oossed stres	C'						
	Eff. stre		Effective st		5.						
	M _(CPT) :			d modulus fr	om CPT						
)	Settlem	ent:	Primary set								

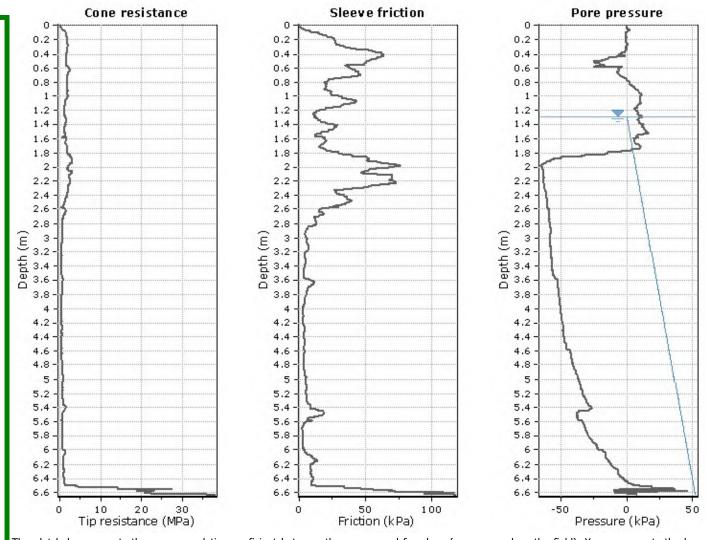
CPeT-IT v.2.1.1.6 - CPTU data presentation & interpretation software - Report created on: 29/06/2021, 2:43:25 PM Project file: X:\21 JOBS\21 131 Windermere Holdings Ltd\Engineering\Geotechnical\CPTs\CPT01-08_filtered.cpt

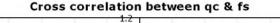


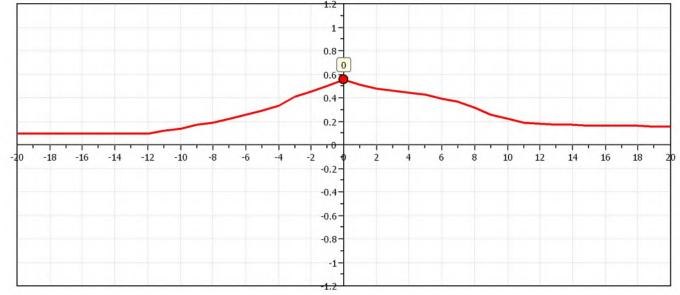



1 0.8 0 0.6 0.4 0.2 10 12 14 16 18 -2 -0.2 -0.4 -0.6 -0.8 -1

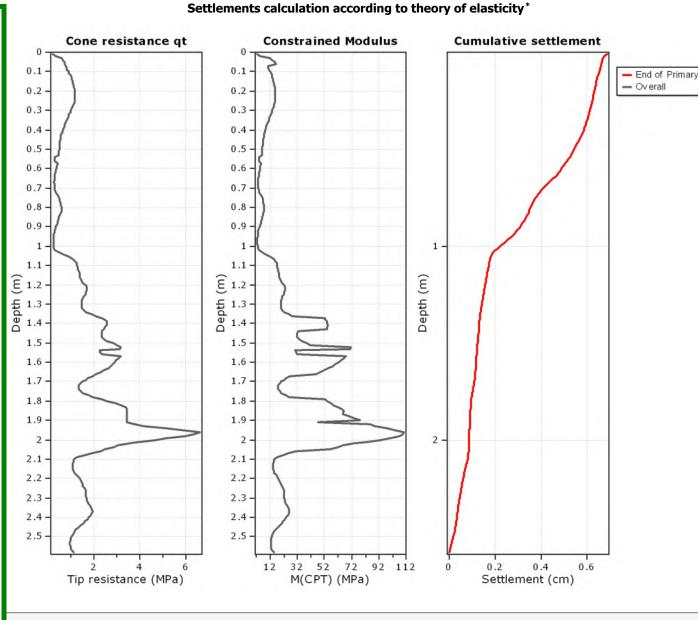
CPeT-IT v.2.1.1.6 - CPTU data presentation & interpretation software - Report created on: 29/06/2021, 2:38:41 PM Project file: X:\21 JOBS\21 131 Windermere Holdings Ltd\Engineering\Geotechnical\CPTs\CPT01-08_filtered.cpt


Total depth: 2.76 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown





Total depth: 6.63 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown


The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).

Total depth: 2.58 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown

Calculation properties

* Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

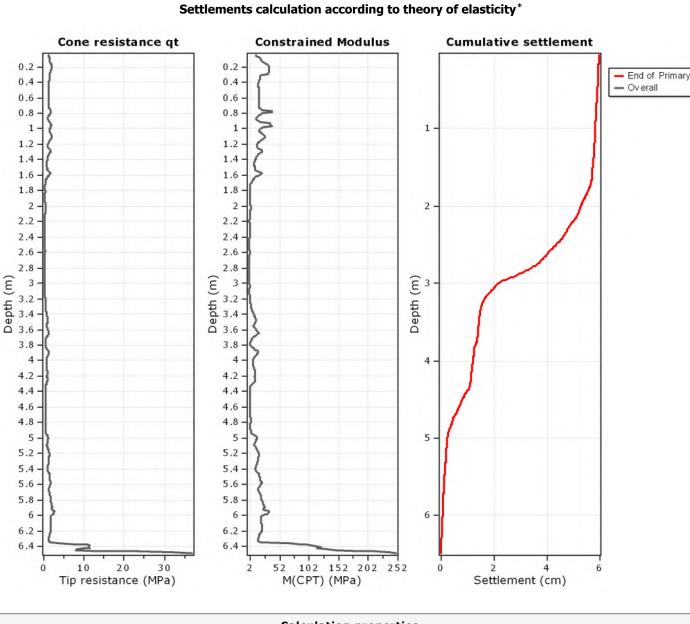
$$\mathbf{S} = C_a \cdot \Delta z \cdot \log(t)$$

Footing type: Rectangular Footing width: 40.00 (m) L/B: 1.0 Footing pressure: 30.00 (kPa) Embedment depth: 0.00 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A

:: Tabula	Tabular results ::									
Point No	Start depth (m)	End depth (m)	Thickness (m)	Relative depth (m)	Delta P (kPa)	M _(CPT) (MPa)	Iz	Settlement (cm)	Second. settlement (cm)	Overall settlement (cm)
226	2.26	2.27	0.01	2.27	29.97	22.20	1.00	0.001	0.000	0.001
227	2.27	2.28	0.01	2.28	29.97	22.49	1.00	0.001	0.000	0.001
228	2.28	2.29	0.01	2.29	29.97	22.34	1.00	0.001	0.000	0.001
229	2.29	2.30	0.01	2.30	29.97	22.41	1.00	0.001	0.000	0.001
230	2.30	2.31	0.01	2.31	29.97	22.64	1.00	0.001	0.000	0.001
231	2.31	2.32	0.01	2.32	29.97	23.15	1.00	0.001	0.000	0.001
232	2.32	2.33	0.01	2.33	29.97	23.44	1.00	0.001	0.000	0.001
233	2.33	2.34	0.01	2.34	29.96	23.92	1.00	0.001	0.000	0.001
234	2.34	2.35	0.01	2.35	29.96	24.74	1.00	0.001	0.000	0.001
235	2.35	2.36	0.01	2.36	29.96	25.57	1.00	0.001	0.000	0.001
236	2.36	2.37	0.01	2.37	29.96	26.26	1.00	0.001	0.000	0.001
237	2.37	2.38	0.01	2.38	29.96	26.30	1.00	0.001	0.000	0.001
238	2.38	2.39	0.01	2.38	29.96	25.99	1.00	0.001	0.000	0.001
239	2.39	2.40	0.01	2.40	29.96	25.62	1.00	0.001	0.000	0.001
240	2.40	2.41	0.01	2.40	29.96	24.27	1.00	0.001	0.000	0.001
241	2.41	2.42	0.01	2.42	29.96	23.26	1.00	0.001	0.000	0.001
242	2.42	2.43	0.01	2.42	29.96	21.56	1.00	0.001	0.000	0.001
243	2.43	2.44	0.01	2.44	29.96	20.84	1.00	0.001	0.000	0.001
244	2.44	2.45	0.01	2.45	29.96	19.30	1.00	0.002	0.000	0.002
245	2.45	2.46	0.01	2.46	29.96	17.83	1.00	0.002	0.000	0.002
246	2.46	2.47	0.01	2.47	29.96	16.37	1.00	0.002	0.000	0.002
247	2.47	2.48	0.01	2.48	29.96	15.29	1.00	0.002	0.000	0.002
248	2.48	2.49	0.01	2.49	29.96	14.81	1.00	0.002	0.000	0.002
249	2.49	2.50	0.01	2.50	29.96	14.09	1.00	0.002	0.000	0.002
250	2.50	2.51	0.01	2.51	29.96	13.85	1.00	0.002	0.000	0.002
251	2.51	2.52	0.01	2.52	29.96	13.30	1.00	0.002	0.000	0.002
252	2.52	2.53	0.01	2.53	29.96	12.98	1.00	0.002	0.000	0.002
253	2.53	2.54	0.01	2.54	29.96	12.72	1.00	0.002	0.000	0.002
254	2.54	2.55	0.01	2.55	29.95	12.77	1.00	0.002	0.000	0.002
255	2.55	2.56	0.01	2.56	29.95	12.83	1.00	0.002	0.000	0.002
256	2.56	2.57	0.01	2.57	29.95	12.82	1.00	0.002	0.000	0.002
257	2.57	2.58	0.01	2.58	29.95	13.95	1.00	0.002	0.000	0.002

Total primary settlement: 0.68 Total secondary settlement: 0.00

Total calculated settlement: 0.68


Abbreviations

Start depth: Start depth of soil layer (penetration depth measured from ground free surface) End depth: End depth of soil layer (penetration depth measured from ground free surface) Thickness: Thickness of soil layer Relative depth: Depth of calculation relative to footing Iz: Stress influence factor Delta P: Footing impossed stress: Eff. stress: Effective stress M_(CPT): Constrained modulus from CPT Settlement: Primary settlement Second. settlement: Secondary settlemends due to creep

Project: Windermere Engergy Ltd

Location: Kerikeri

Calculation properties

* Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_{v}}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

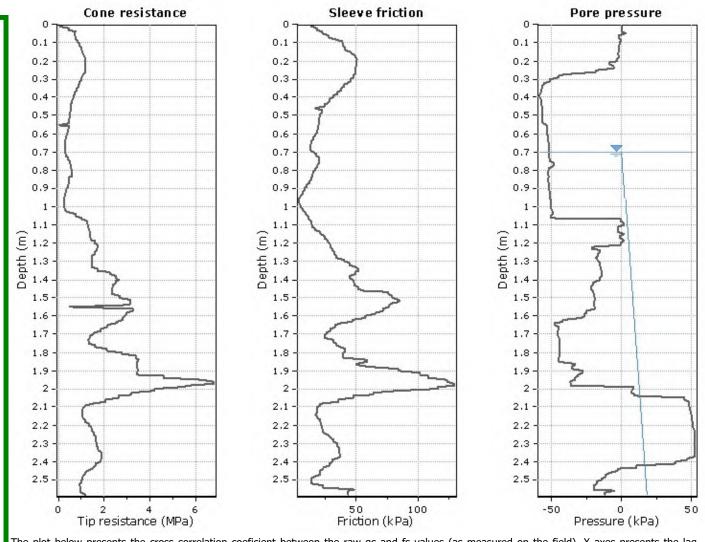
$$\mathbf{S} = C_a \cdot \Delta z \cdot \log(t)$$

Footing type: Rectangular Footing width: 40.00 (m) L/B: 1.0 Footing pressure: 30.00 (kPa) Embedment depth: 0.00 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A Total depth: 6.49 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown

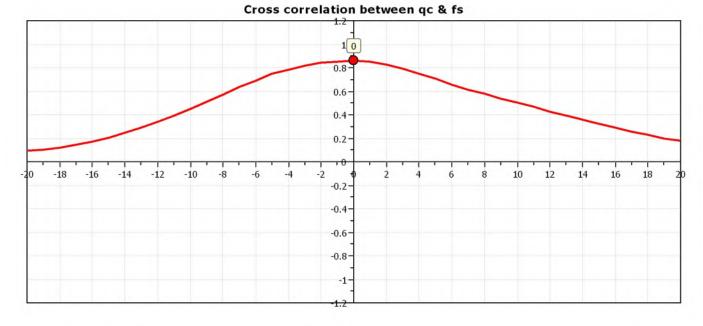
_ . .

:: Tabula	Tabular results ::									
Point No	Start depth (m)	End depth (m)	Thickness (m)	Relative depth (m)	Delta P (kPa)	M _(CPT) (MPa)	Iz	Settlement (cm)	Second. settlement (cm)	Overall settlement (cm)
631	6.35	6.36	0.01	6.36	29.36	19.25	0.98	0.002	0.000	0.002
632	6.36	6.37	0.01	6.37	29.36	70.27	0.98	0.000	0.000	0.000
633	6.37	6.38	0.01	6.38	29.36	84.38	0.98	0.000	0.000	0.000
634	6.38	6.39	0.01	6.39	29.35	95.04	0.98	0.000	0.000	0.000
635	6.39	6.40	0.01	6.40	29.35	105.92	0.98	0.000	0.000	0.000
636	6.40	6.41	0.01	6.41	29.35	113.66	0.98	0.000	0.000	0.000
637	6.41	6.42	0.01	6.42	29.35	121.62	0.98	0.000	0.000	0.000
638	6.42	6.43	0.01	6.43	29.34	120.95	0.98	0.000	0.000	0.000
639	6.43	6.44	0.01	6.44	29.34	114.92	0.98	0.000	0.000	0.000
640	6.44	6.45	0.01	6.45	29.34	134.20	0.98	0.000	0.000	0.000
641	6.45	6.46	0.01	6.46	29.33	147.55	0.98	0.000	0.000	0.000
642	6.46	6.47	0.01	6.47	29.33	190.24	0.98	0.000	0.000	0.000
643	6.47	6.48	0.01	6.48	29.33	213.98	0.98	0.000	0.000	0.000
644	6.48	6.49	0.01	6.49	29.33	239.30	0.98	0.000	0.000	0.000

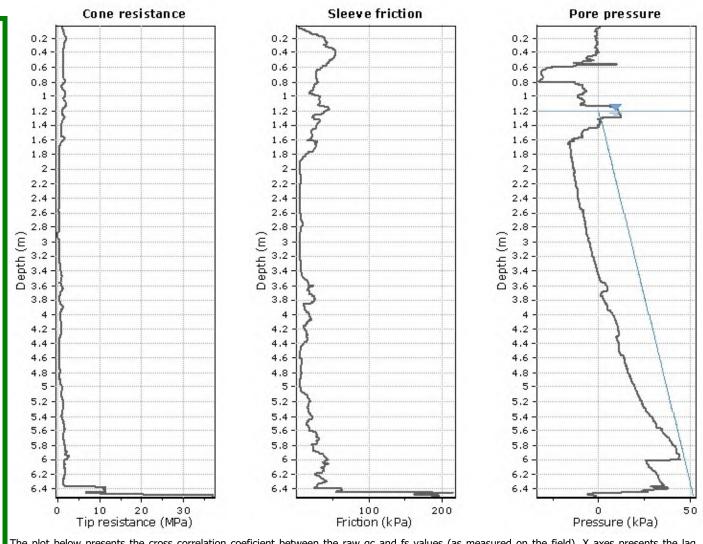
Total primary settlement: 5.96 Total secondary settlement: 0.00


Total calculated settlement: 5.96

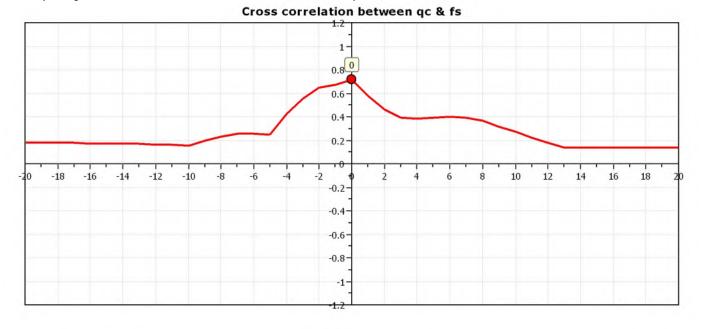
Abbreviations


Start depth:	Start depth of soil layer (penetration depth measured from ground free surface)
End depth:	End depth of soil layer (penetration depth measured from ground free surface)
Thickness:	Thickness of soil layer
Relative depth:	Depth of calculation relative to footing
Iz:	Stress influence factor
Delta P:	Footing impossed stress:
Eff. stress:	Effective stress
Mccm:	Constrained modulus from CPT
Eff. stress:	Effective stress
M _(CPT) :	Constrained modulus from CPT
Settlement:	Primary settlement
Second. settlement:	Secondary settlemends due to creep

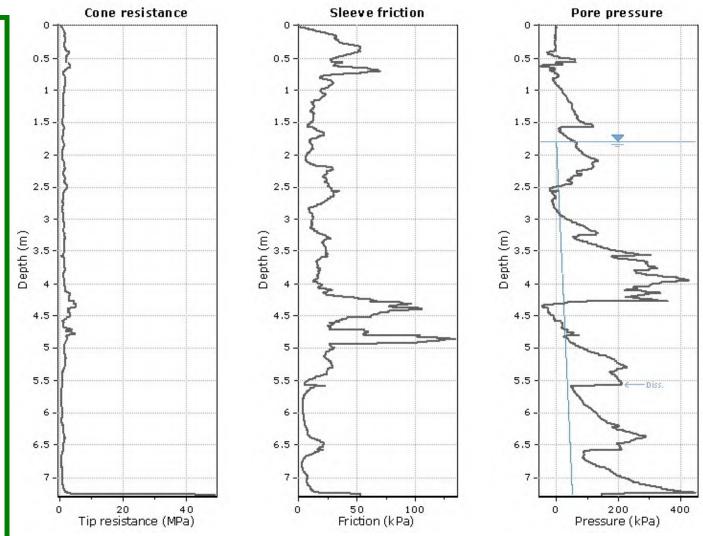
Total depth: 2.58 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown

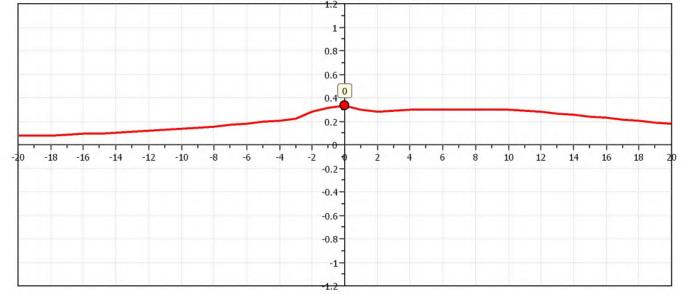


The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).



Total depth: 6.49 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown


The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).


FNDC - Approved Building Consent Document - EBC-2023-1243-0 - Pg 235 of 376 - 11/07/2023 - NZBTC

Total depth: 7.27 m, Date: 26/05/2021 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Uknown Cone Operator: Uknown

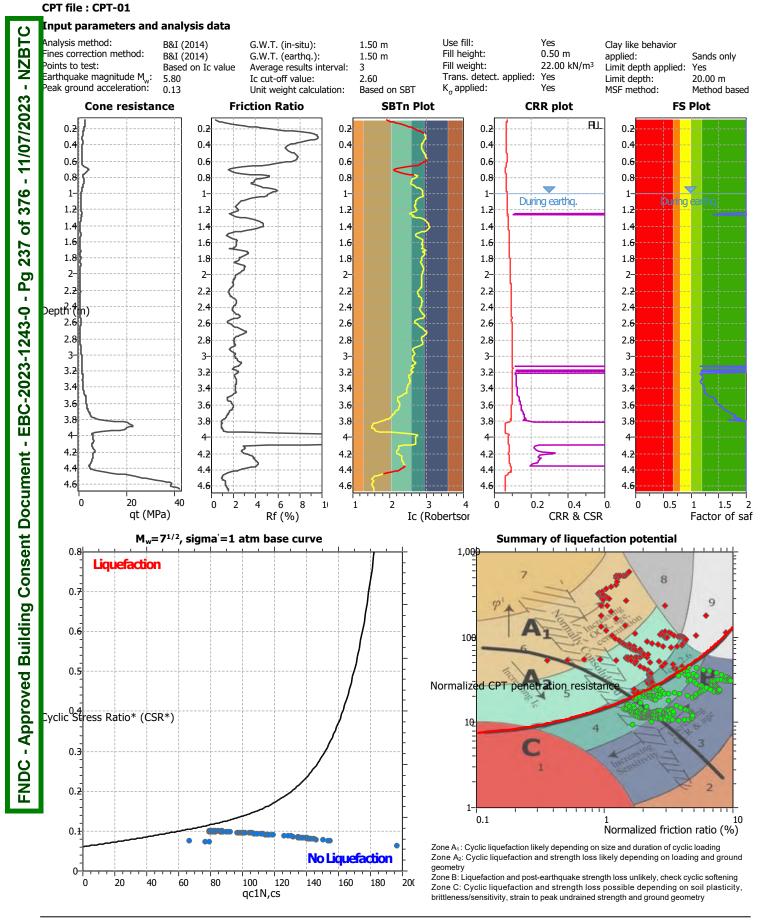
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).

Cross correlation between qc & fs

Preliminary Geotechnical Appraisal Report Proposed Industrial Development Lots 6-8 Kahikatearoa Lane Extension, Waipapa Peter Swan Limited

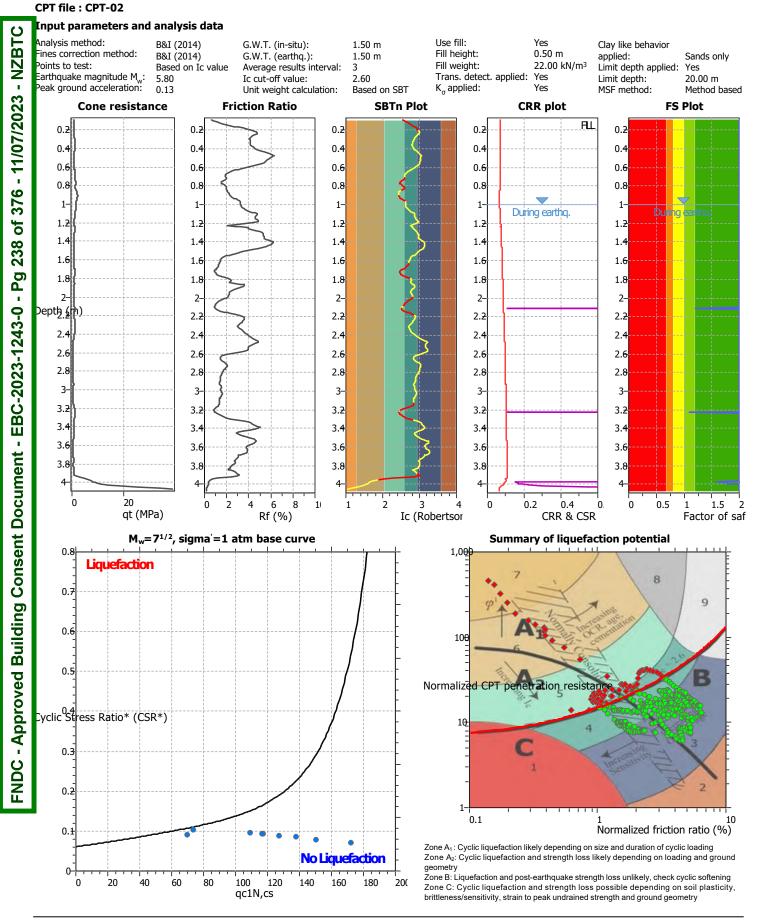
January 2023

Appendix C – Settle 3D Analysis and Liquefaction Assessment Results

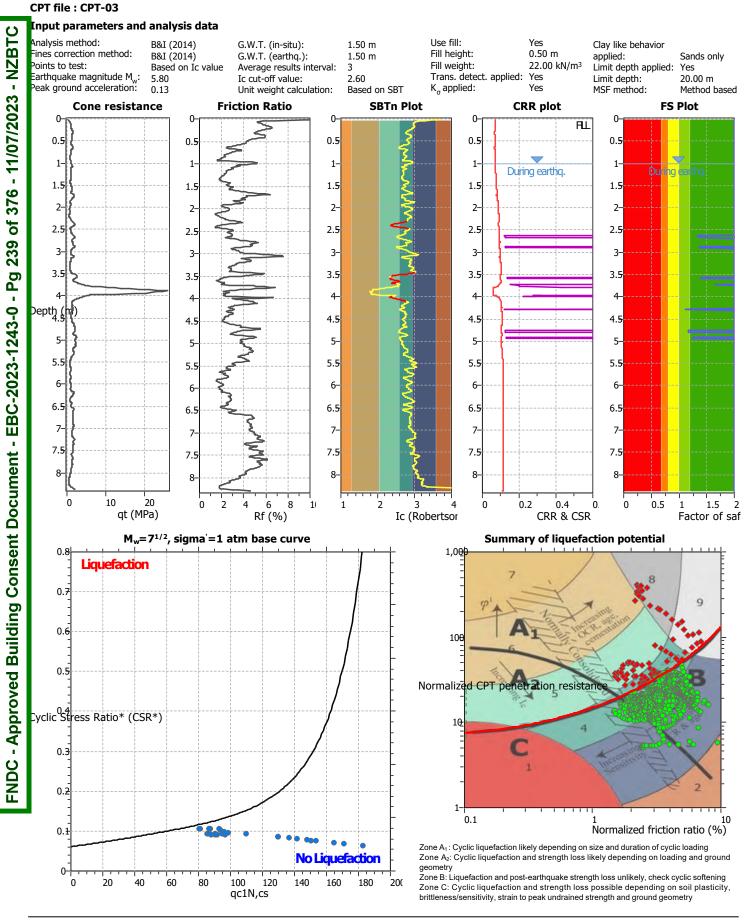

22 189

22 189_preliminary geotechnical investigation reporthttps://haighworkman2020.sharepoint.com/sites/suitefiles/shared documents/clients/peter swan limited/jobs/22 189 - kahikatearoa lane, waipapa (lot 1 dp 178287)/engineering/pgar/22 189_preliminary geotechnical investigation report.docx

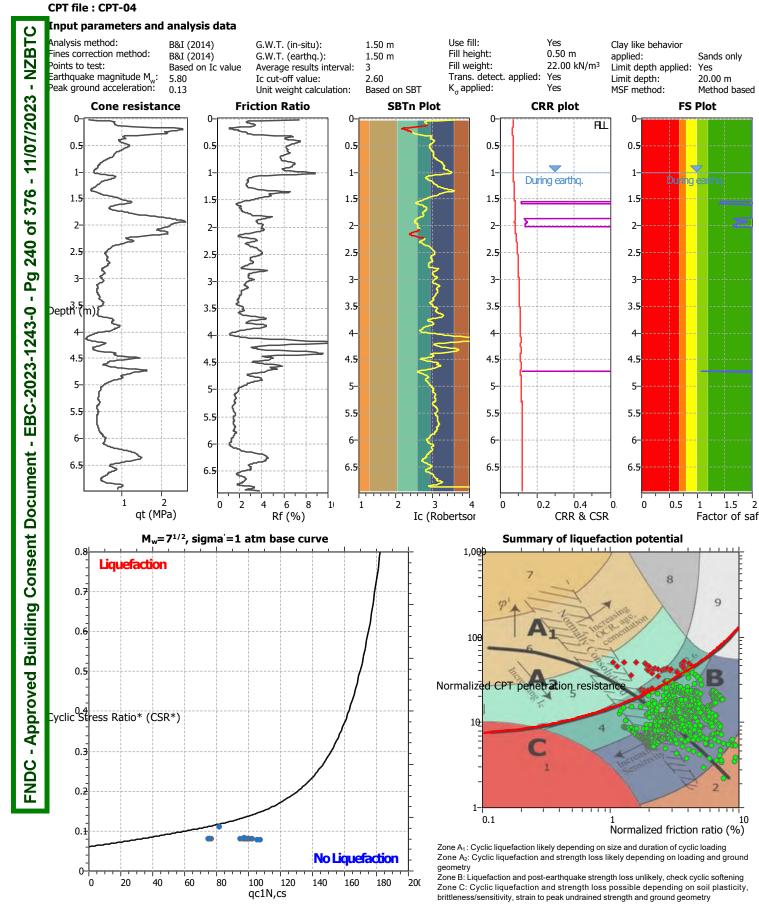
Project title : Peter Swan Limited


Location : Kahikatearoa Extention (Bidfoods)

CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 19/01/2023, 12:12:44 PM 1 Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)



Project title : Peter Swan Limited


Project title : Peter Swan Limited

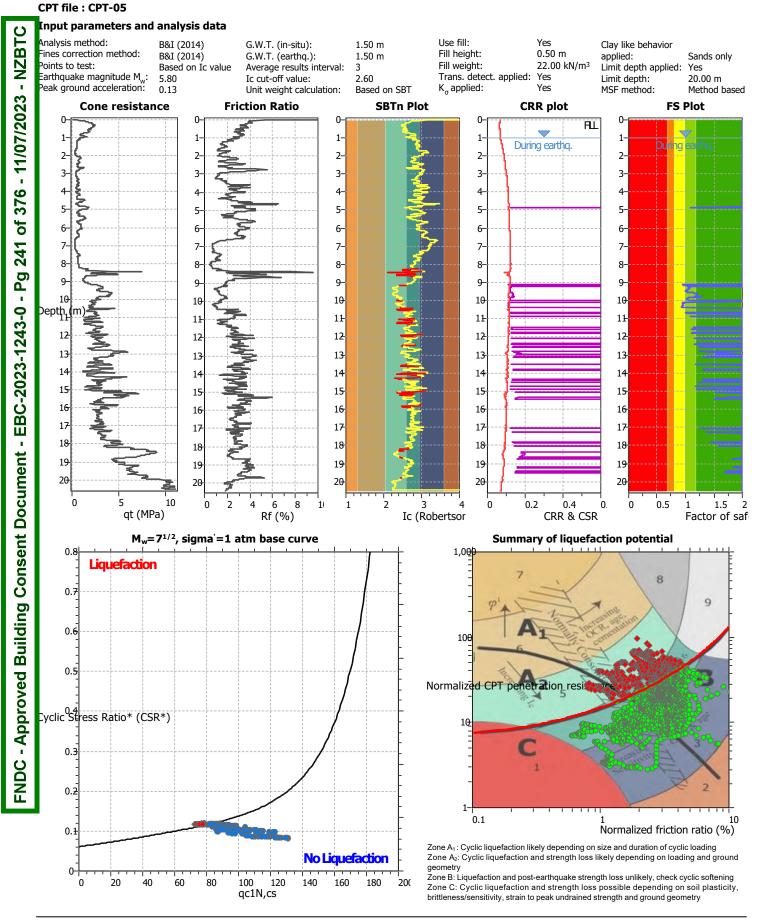
Project title : Peter Swan Limited

Location : Kahikatearoa Extention (Bidfoods)

CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 19/01/2023, 12:12:46 PM 4 Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)

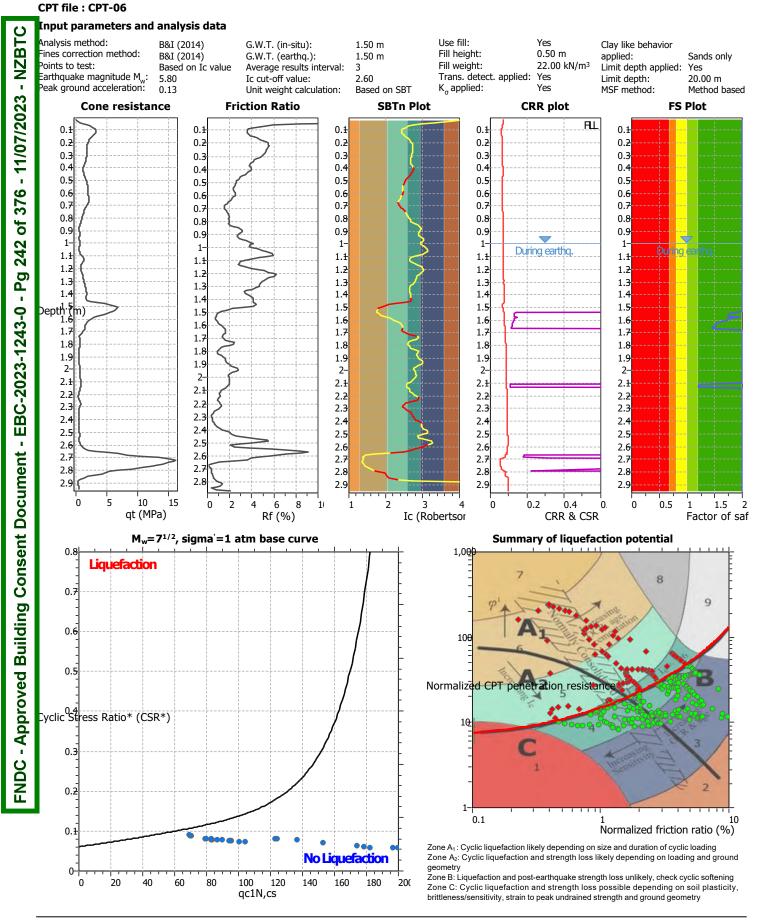
10

1.5

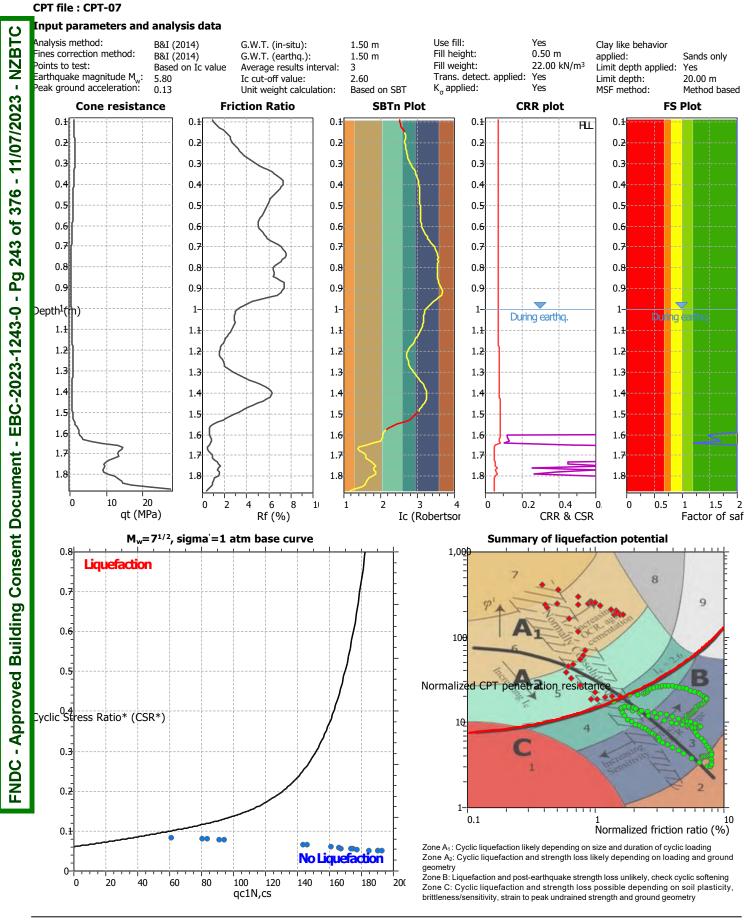

9

2

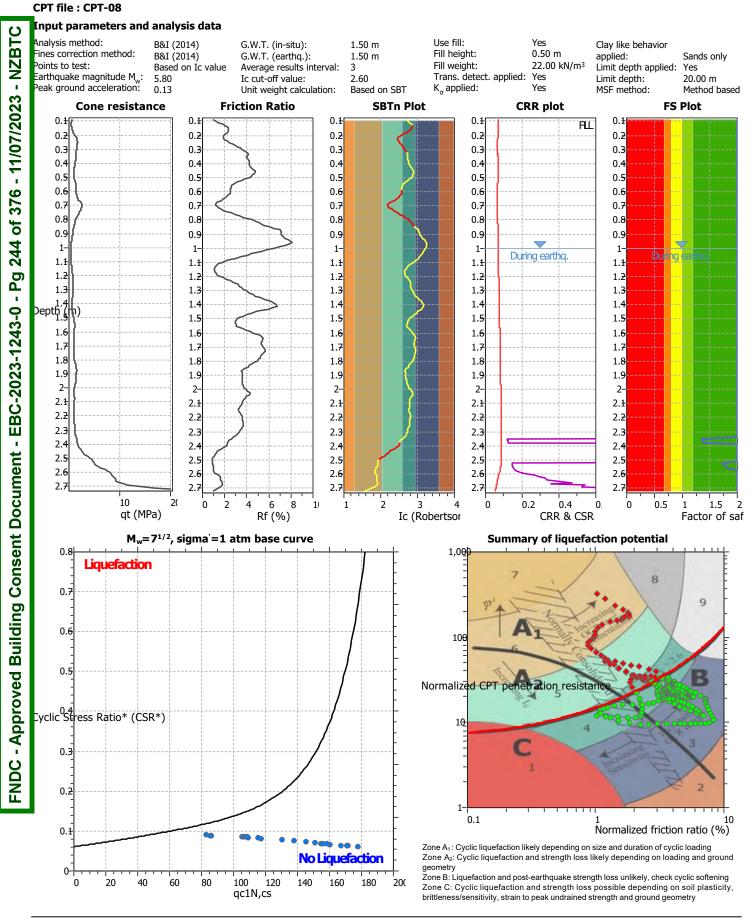
Project title : Peter Swan Limited


Location : Kahikatearoa Extention (Bidfoods)

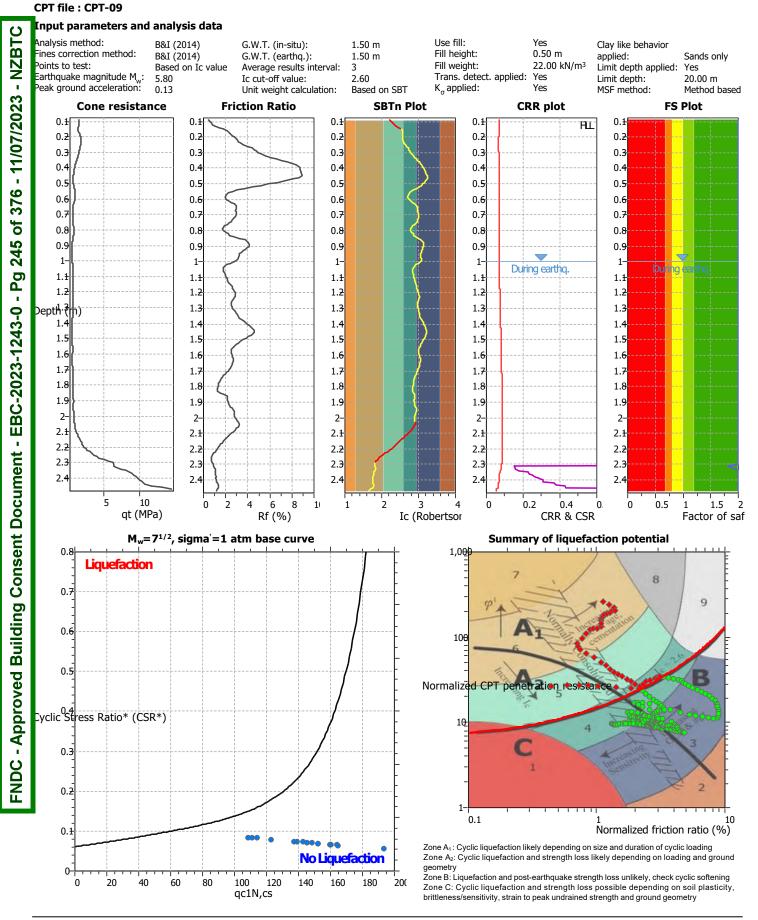
CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 19/01/2023, 12:12:47 PM 5 Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)



Project title : Peter Swan Limited

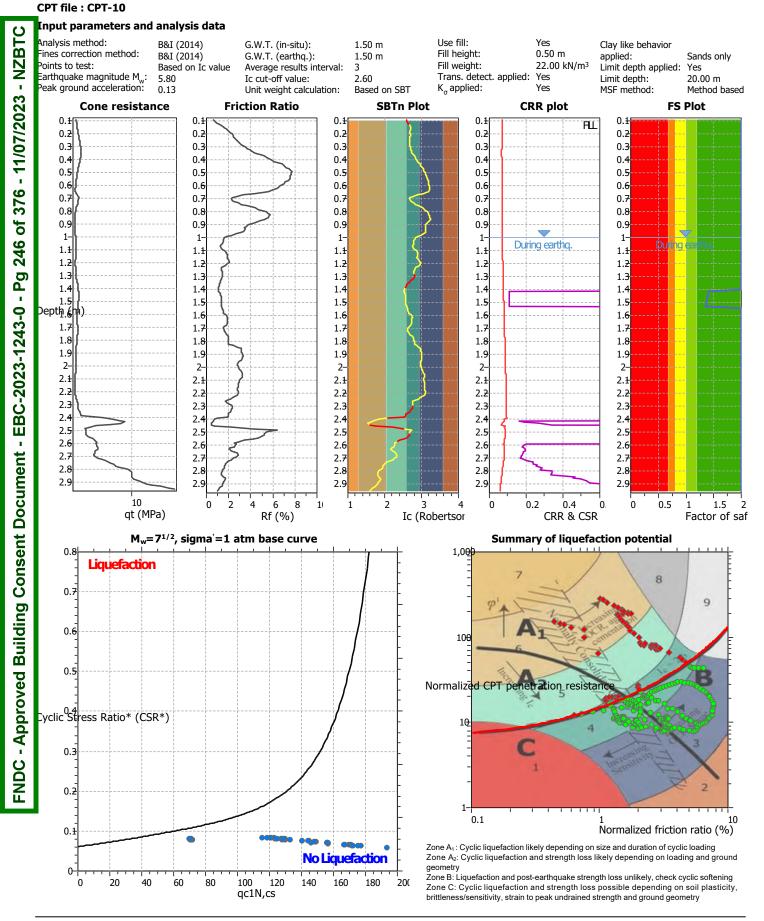


Project title : Peter Swan Limited


Project title : Peter Swan Limited

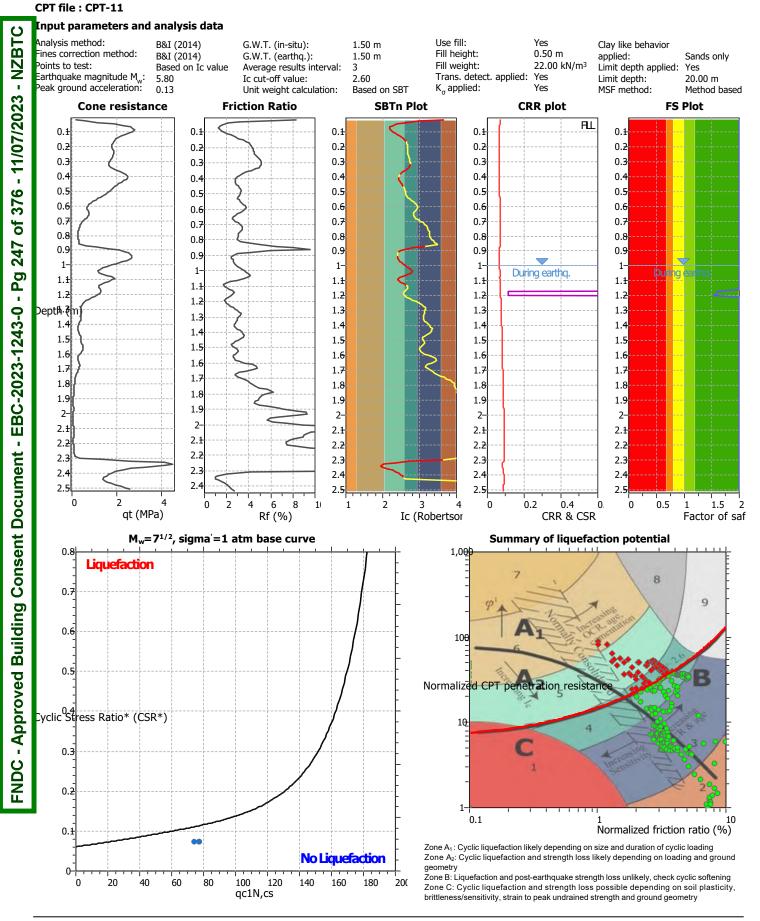
Project title : Peter Swan Limited

Location : Kahikatearoa Extention (Bidfoods)

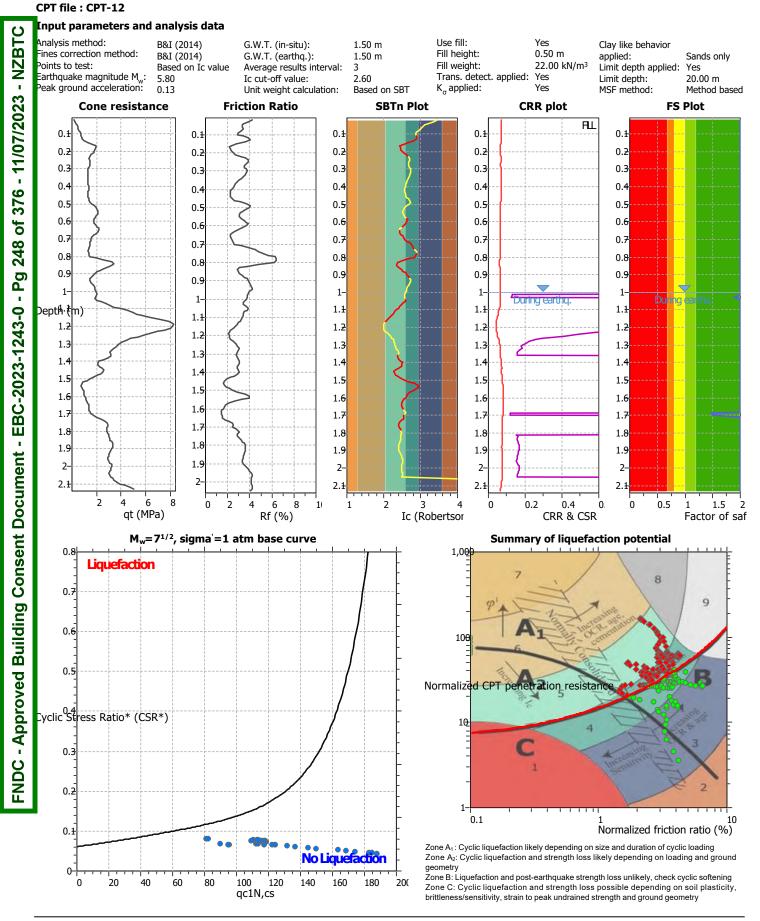


CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 19/01/2023, 12:12:50 PM 9
Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)

Project title : Peter Swan Limited


Location : Kahikatearoa Extention (Bidfoods)

CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 19/01/2023, 12:12:50 PM 10
Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)



Project title : Peter Swan Limited

Project title : Peter Swan Limited

Project title : Peter Swan Limited

0-

0

20

. 40

60

80

100

qc1N,cs

120

. 140

160

Location : Kahikatearoa Extention (Bidfoods)

Clay like behavior

Limit depth applied:

Sands only

Method based

1.5

Factor of sa

9

10

2

20.00 m

Yes

FS Plot

na

applied:

Limit depth:

MSF method:

0-

0.5

1-

1.5

2-

2.5

3-

3.5

4-

4.5

5-

5.5

6-

6.5

7-

7.5

8-

8.5

9

9.5

10

10.

11-

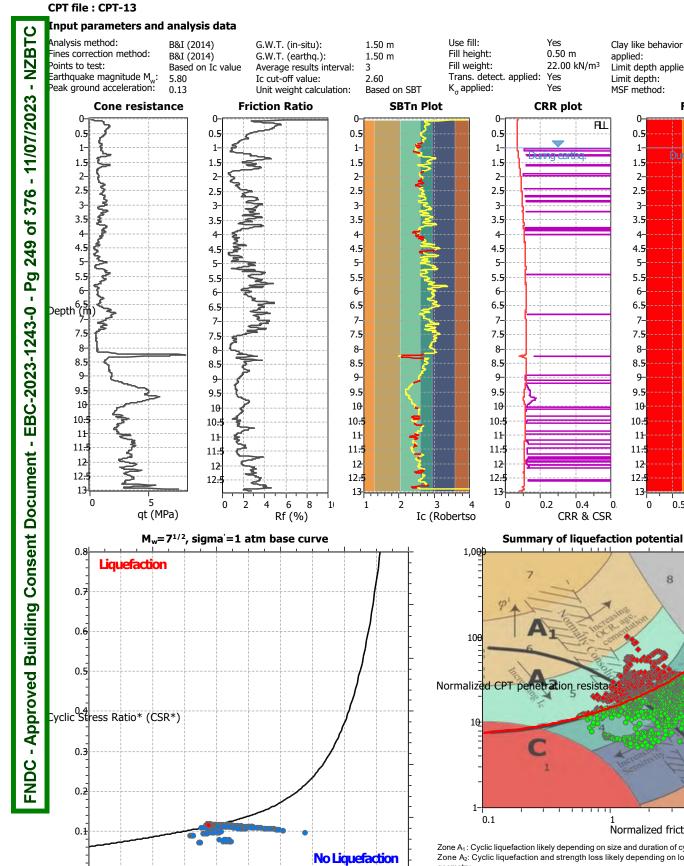
11.

12-

12.

13

0


0.5

8

Normalized friction ratio (%)

1

0

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground geometry Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening . 180 200 Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity. brittleness/sensitivity, strain to peak undrained strength and ground geometry

Project title : Peter Swan Limited

0-

0

20

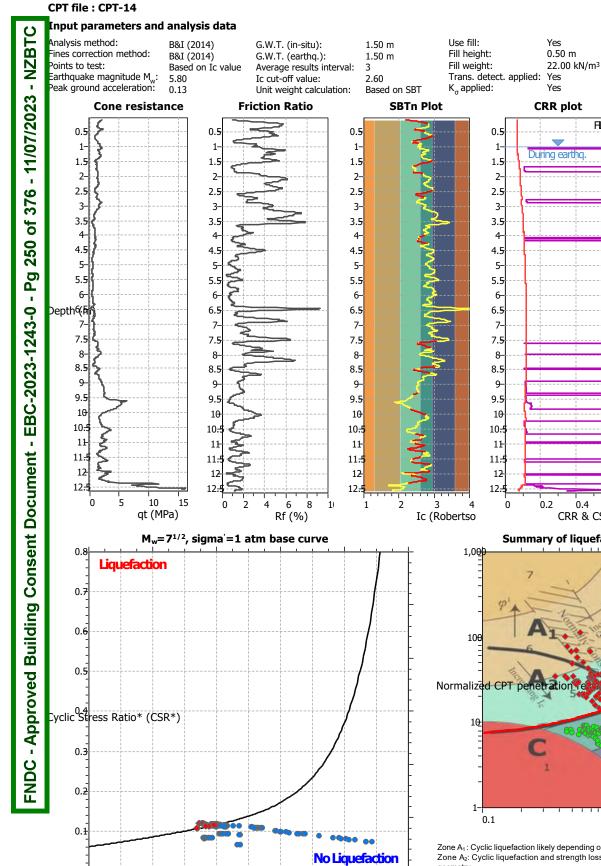
. 40

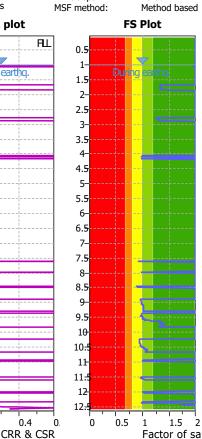
60

80

100

qc1N,cs


120


. 140

160

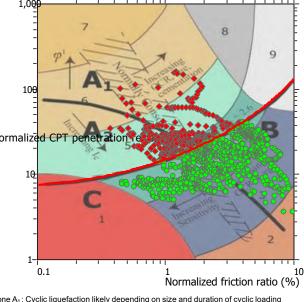
180

Location : Kahikatearoa Extention (Bidfoods)

Clay like behavior

Limit depth applied:

Sands only


20.00 m

Yes

applied:

Limit depth:

Summary of liquefaction potential

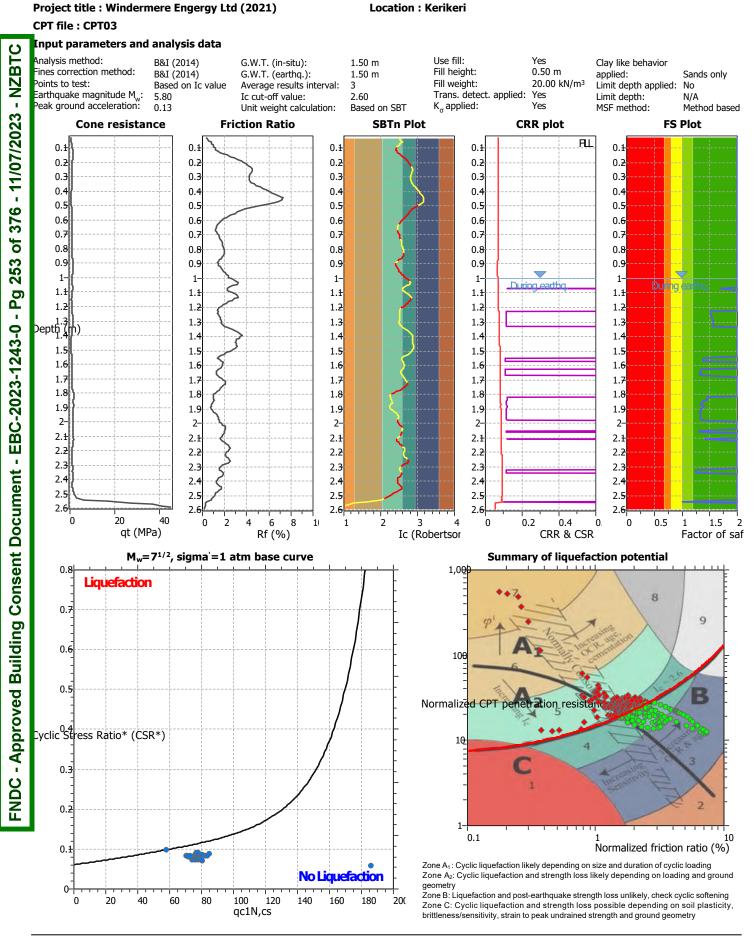
Zone A1: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground geometry Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening

Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity. brittleness/sensitivity, strain to peak undrained strength and ground geometry

200

Project title : Windermere Engergy Ltd (2021) Location : Kerikeri **CPT file : CPT01** Input parameters and analysis data - Pg 251 of 376 - 11/07/2023 - NZBTC Analysis method: Use fill: Yes B&I (2014) G.W.T. (in-situ): 1.50 m Clay like behavior 0.50 m ines correction method: Fill height: B&I (2014) G.W.T. (earthq.): 1.50 m applied: Sands only Average results interval: Limit depth applied: Points to test: Fill weight: 20.00 kN/m3 Based on Ic value 3 No Earthquake magnitude M_w: 5.80 Ic cut-off value: 2.60 Trans. detect. applied: Yes Limit depth: N/A Peak ground acceleration: K_{σ} applied: Yes MSF method: Based on SBT Method based 0.13 Unit weight calculation: **Friction Ratio** SBTn Plot **CRR** plot FS Plot **Cone resistance** 0-0-0-0-0 FLL 0.5 0.5 0.5 0.5 0.5 1. 1-1 1 1 During earth Ďυ ina 1.5 1.5 1.5 1.5 1.! 2-2-2 2-2-2.5 2.1 2.5 2.5 2.5 3-3 3-3-3 3.5 3. 3.5 3. 3.5 4-4 4 Depth (FNDC - Approved Building Consent Document - EBC-2023-1243-0 4.5 4.5 4.5 4. 4.5 5-5-5-5 5-5.5 5.5 5.5 5.5 5.5 6-6 6-6-6 6.5 6.! 6.5 6.5 6.5 7-7-7 7 7 7.5 7.5 7. 7.5 7.5 8-8 8 8 8 10 20 0 8 . 0.4 0 0.5 1.5 0 6 1 2 3 0 0.2 0 1 1 2 qt (MPa) Rf (%) CRR & CSR Ic (Robertsor Factor of saf $M_w = 7^{1/2}$, sigma'=1 atm base curve Summary of liquefaction potential 0.8 1.00 Liquefaction 0.7 9 0.6 106 0.5 penetration resistar Normalized CPT Cyclic Stress Ratio* (CSR*) 10 0.3 0.2 ŀ 0.1 10 Normalized friction ratio (%) 0.1Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground No Liau geometry 0-Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, 0 20 . 40 60 80 100 120 . 140 160 180 200 qc1N,cs brittleness/sensitivity, strain to peak undrained strength and ground geometry

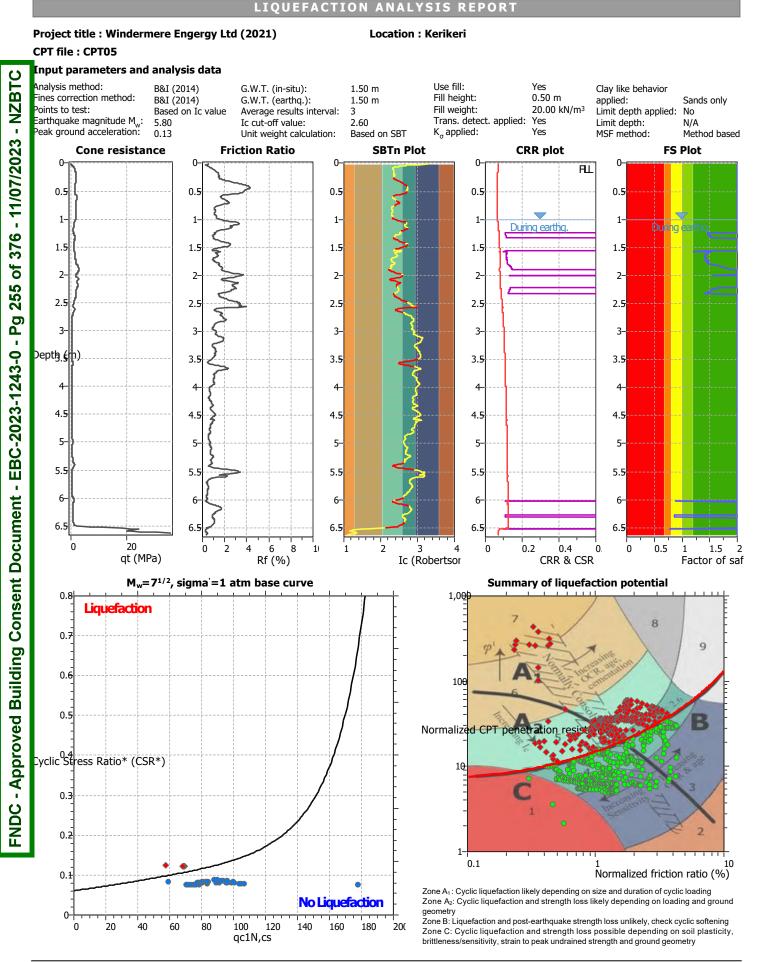
LIQUEFACTION ANALYSIS REPORT


Project title : Windermere Engergy Ltd (2021) Location : Kerikeri **CPT file : CPT02** Input parameters and analysis data - Pg 252 of 376 - 11/07/2023 - NZBTC Analysis method: Use fill: Yes B&I (2014) G.W.T. (in-situ): 1.50 m Clay like behavior 0.50 m ines correction method: Fill height: B&I (2014) G.W.T. (earthq.): 1.50 m applied: Sands only Points to test: Average results interval: Fill weight: 20.00 kN/m3 Based on Ic value 3 Limit depth applied: No Earthquake magnitude M_w: 5.80 Ic cut-off value: 2.60 Trans. detect. applied: Yes Limit depth: N/A Peak ground acceleration: K_{σ} applied: Yes Based on SBT MSF method: Method based 0.13 Unit weight calculation: **Friction Ratio** SBTn Plot **CRR** plot FS Plot **Cone resistance** 0 0 0-FLL 0.1 0.± 0.10.1 0.1 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1. 1-1 1 1 During earthq Du 1.1 1.1 1.11.1 1.1 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 FNDC - Approved Building Consent Document - EBC-2023-1243-0 epth (1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 2-2-2-2-2-2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 0 10 20 30 6 8 1.5 0 2 3 4 0.2 0.4 0 0 0.5 1 1 0 2 1 qt (MPa) Rf (%) Ic (Robertsor CRR & CSR Factor of saf $M_w = 7^{1/2}$, sigma'=1 atm base curve Summary of liquefaction potential 0.8 1.00 Liquefaction 8 0.7 9 0.6 106 0.5 penetration resis Normalized CP 0.4 Cyclic Stress Ratio* (CSR*) 1<u>0</u> 0.3 0.2 ŀ 0.1 10 Normalized friction ratio (%) 0.1Zone A1: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground No Liquefaction geometry 0-0 20 . 40 60 80 100 120 . 140 160 . 180 200

LIQUEFACTION ANALYSIS REPORT

Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity. brittleness/sensitivity, strain to peak undrained strength and ground geometry

qc1N,cs


Project title : Windermere Engergy Ltd (2021)

LIQUEFACTION ANALYSIS REPORT

Location : Kerikeri

CPT file : CPT04 Input parameters and analysis data - Pg 254 of 376 - 11/07/2023 - NZBTC Analysis method: Use fill: Yes B&I (2014) G.W.T. (in-situ): 1.50 m Clay like behavior 0.50 m ines correction method: Fill height: B&I (2014) G.W.T. (earthq.): 1.50 m applied: Sands only Points to test: Average results interval: Fill weight: 20.00 kN/m3 Based on Ic value 3 Limit depth applied: No Earthquake magnitude M_w: 5.80 Ic cut-off value: 2.60 Trans. detect. applied: Yes Limit depth: N/A Peak ground acceleration: K_{σ} applied: Yes Based on SBT MSF method: Method based 0.13 Unit weight calculation: **Friction Ratio** SBTn Plot **CRR** plot FS Plot **Cone resistance** FLL 0.1 0.1 0.1 0.1 0.1 0.7 0.7 0.7 0.2 0.7 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1-1 1-1 1-During earth 1.11.1 1.11.11.5 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3pth (1.5 1.4 1.4 1.4 1.4 FNDC - Approved Building Consent Document - EBC-2023-1243-0 1.5 1.5 1.51.51.6 1.6 1.6 1.6 1.61.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.81.8 1.9 1.9 1.9 1.9 1.9 2-2-2-2-2-2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2. 10 20 30 0 6 8 . 0.4 0 0 1 2 3 0 0.2 0 0.5 1.5 1 4 1 2 qt (MPa) Rf (%) Ic (Robertsor CRR & CSR Factor of saf $M_w = 7^{1/2}$, sigma'=1 atm base curve Summary of liquefaction potential 0.8 1.00 Liquefaction 8 0.7 9 0.6 106 0.5 penetration resista Normalized CPT 0.4 Cyclic Stress Ratio* (CSR*) 10 0.3 0.2 ŀ 0.1 10 Normalized friction ratio (%) 0.1Zone A1: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground No Liquefaction geometry 0-Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening 0 20 . 40 60 80 100 120 . 140 160 . 180 200 Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity. qc1N,cs brittleness/sensitivity, strain to peak undrained strength and ground geometry

CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 18/01/2023, 2:16:14 PM 5 Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)

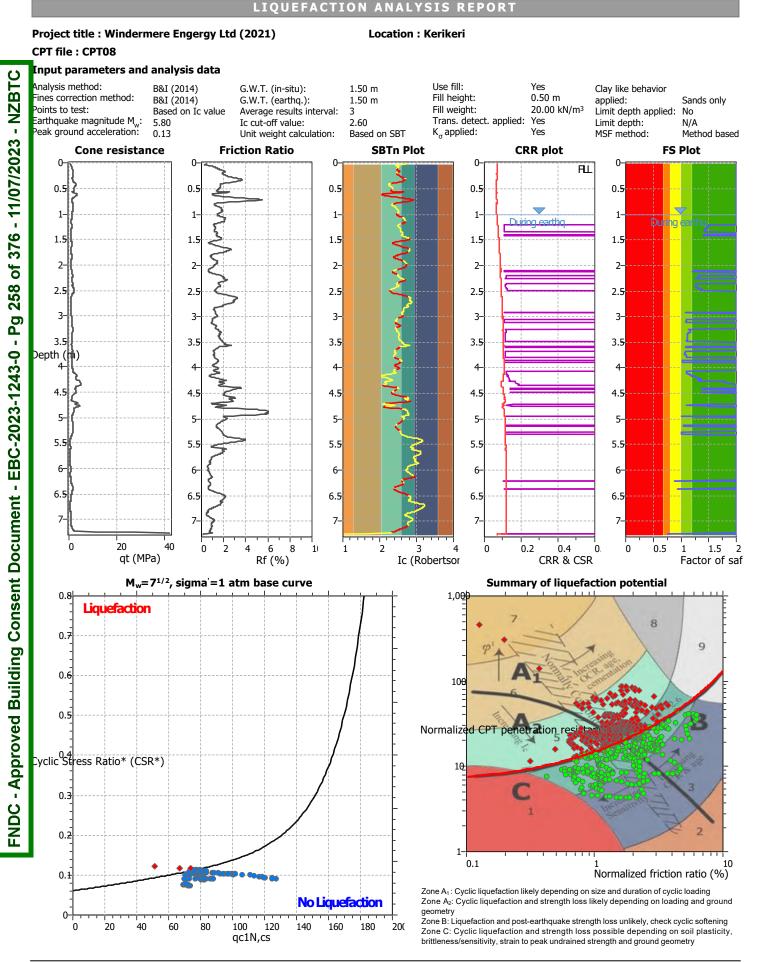
Project title : Windermere Engergy Ltd (2021) Location : Kerikeri **CPT file : CPT06** Input parameters and analysis data - Pg 256 of 376 - 11/07/2023 - NZBTC Analysis method: Use fill: Yes B&I (2014) G.W.T. (in-situ): 1.50 m Clay like behavior 0.50 m ines correction method: Fill height: B&I (2014) G.W.T. (earthq.): 1.50 m applied: Sands only Points to test: Average results interval: Fill weight: 20.00 kN/m3 Based on Ic value 3 Limit depth applied: No Earthquake magnitude M_w: 5.80 Ic cut-off value: 2.60 Trans. detect. applied: Yes Limit depth: N/A Peak ground acceleration: K_{σ} applied: Yes Based on SBT MSF method: Method based 0.13 Unit weight calculation: **Friction Ratio** SBTn Plot **CRR** plot FS Plot **Cone resistance** 0 0 0-FLL 0.1 0.± 0.10.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1 1-1 1 1 During earthq 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 epth (m) 1.4 1.3 1.3 1.3 1.3 FNDC - Approved Building Consent Document - EBC-2023-1243-0 1.4 1.4 1.4 1.4 1.51.5 1.5 1.51.51.6 1.6 1.6 1.6 1.6 1.7 1.7 17 1.7 1.7 1.8 1.8 1.8 1.8 1.81.9 1.9 1.9 1.9 1.9 2-2 2-2 2-2.± 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 24 2.4 2.5 2.5 2.5 2.5 2.5 2 4 6 6 8 . 0.4 0 1.5 0 2 1 1 2 0 0.2 0 0.5 1 2 qt (MPa) Rf (%) Ic (Robertsor CRR & CSR Factor of saf $M_w = 7^{1/2}$, sigma'=1 atm base curve Summary of liquefaction potential 0.8 1.00 Liquefaction 8 0.7 9 0.6 100 0.5 penetration resistan Normalized CPT Cyclic Stress Ratio* (CSR*) 10 0.3 0.2 ŀ 0.1 10 Normalized friction ratio (%) 0.1Zone A1: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground No Liquefaction geometry 0-Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening 0 20 . 40 60 80 100 120 . 140 160 180 200 Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity. qc1N,cs brittleness/sensitivity, strain to peak undrained strength and ground geometry

Project title : Windermere Engergy Ltd (2021) Location : Kerikeri **CPT file : CPT07** Input parameters and analysis data of 376 - 11/07/2023 - NZBTC Analysis method: Use fill: Yes B&I (2014) G.W.T. (in-situ): 1.50 m Clay like behavior 0.50 m ines correction method: Fill height: B&I (2014) G.W.T. (earthq.): 1.50 m applied: Sands only Average results interval: Limit depth applied: Points to test: Fill weight: 20.00 kN/m3 Based on Ic value 3 No Earthquake magnitude M_w: 5.80 Ic cut-off value: 2.60 Trans. detect. applied: Yes Limit depth: N/A Peak ground acceleration: K_{σ} applied: Yes MSF method: Based on SBT Method based 0.13 Unit weight calculation: **Cone resistance Friction Ratio** SBTn Plot **CRR** plot FS Plot FLL 0.5 0.5 0.5 0.5 0.! 1. 1-1 1 During earthq ing 1.51.5 1.5 1.5 1. 2-2-2 2 2 - Pg 257 2.5 2.! 2.5 2. 2.5 3-3 3-3-3-FNDC - Approved Building Consent Document - EBC-2023-1243-0 Depth (h) 3.5 3.5 3.5 3.5 4 4-4 4 4.5 4. 4.5 4.5 4.5 5-5-5-5-5 5.5 5.! 5.5 5.5 5.5 6-6 6-6-6.5 6. 6.5 6.5 6.5 20 0 6 8 . 0.4 0 1.5 0 1 1 2 3 0 0.2 0 0.5 4 1 2 qt (MPa) Rf (%) CRR & CSR Ic (Robertsor Factor of saf $M_w = 7^{1/2}$, sigma'=1 atm base curve Summary of liquefaction potential 0.8 1.00 Liquefaction 8 0.7 9 0.6 106 0.5 Normalized CPT penetration resis Cyclic Stress Ratio* (CSR*) 10 0.3 0.2 ŀ 0.1 10 Normalized friction ratio (%) 0.1Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground No Liquefaction geometry 0-0 20 . 40 80 120 . 140 . 180

LIQUEFACTION ANALYSIS REPORT

Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

200


160

60

100

qc1N,cs

CLiq v.2.2.1.7 - CPT Liquefaction Assessment Software - Report created on: 18/01/2023, 2:16:16 PM 8 Project file: C:\Users\waynethorburn\OneDrive-GeoTech\Haigh Workman Limited\SuiteFiles - Clients\Peter Swan Limited\Jobs\22 189 - Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)

Table of Contents

Project Settings	. 2
Advanced Settings	. 2
Soil Profile	2
Stage Settings	. 3
Soil Layers	4
cpt11	4
cpt6	4
cpt01wm	4
cpt07wm	5
cpt08wm	5
cpt14	6
cpt01	6
cpt09	7
cpt08	7
cpt12	8
cpt05	8
cpt13	9
cpt03	9
cpt10	10
cpt07	10
cpt04	11
cpt02	11
cpt04wm	12
cpt06wm	12
Soil Properties	14

Project Settings

Document Name	03 surcharge
Project Title	Peter Swan Ltd
Analysis	Lots 6-8
Author	W.T
Company	HWL
Date Created	13/01/2023, 9:25:55 am
Last saved with Settle3 version	5.018
Stress Computation Method	Boussinesq
Stress Units	Metric, stress as kPa
Settlement Units	millimeters
Time-dependent Consolidation Analysis	
Time Units	years
Permeability Units	meters/second

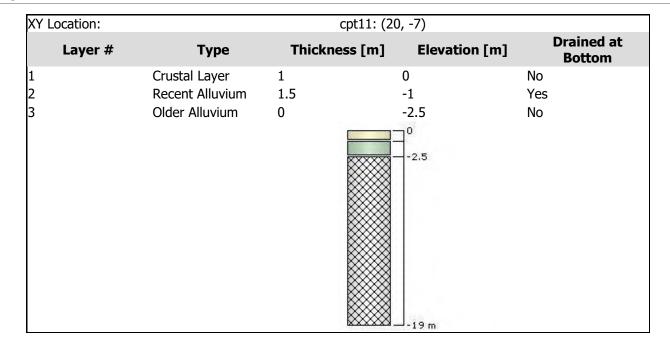
Advanced Settings

Calculate settlement with mean stress	
Start of secondary consolidation (% of primary)	95
Min. stress for secondary consolidation (% of initial)	1
Reset time when load changes for secondary consolidation	No
Minimum settlement ratio for subgrade modulus	0.9
Use average poisson's ratio to calculate layered stresses	
Update Cv in each time step (improves	
consolidation accuracy)	
Ignore negative effective stresses in settlement calculations	
Add field points to load edges	

Soil Profile

Layer Option

Extruded Section Layers


Stage Settings

	Stage #	Name	Time [years]
1	Stage 1	0	
2	Stage 2	0.5	
3	Stage 3	1	
4	Stage 4	2	
5	Stage 5	5	
6	Stage 6	10	
7	Stage 7	50	

Soil Layers

Ground Surface Drained: Yes

cpt11

cpt6

Layer #	Туре	Thick	ness [m]	Elevation [m]		Drained at Bottom
1	Crustal Layer	1	(No	
2	Recent Alluvium	2	-	-1	Yes	
3	Older Alluvium	0	-	-3	No	
				-19 m		

cpt01wm

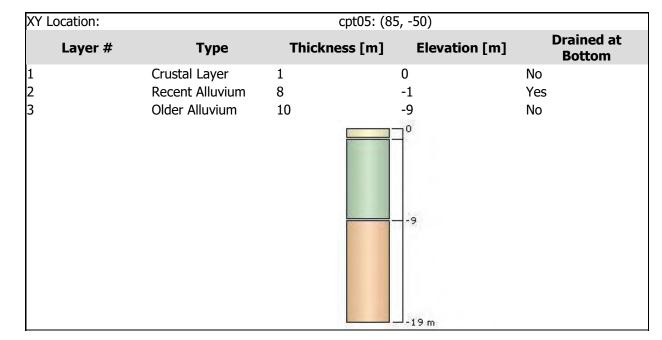
XY Locati	on:	cpt01wm: (65, -5)					
Lay	/er #	Туре	Thickn	ess [m]	Elevation [m]	Drained at Bottom	
1		Crustal Layer	1	()	No	
2		Recent Alluvium	6.6	-	-1	Yes	
3		Older Alluvium	0	-	7.6	No	
					-7.6 -19 m		

cpt07wm

XY Location:		cpt07wm: (85, -10)					
Layer #	Туре	Thickness [m]	Elevation [m]	Drained at Bottom			
L	Crustal Layer	1	0	No			
2	Recent Alluvium	5.5	-1	Yes			
3	Older Alluvium	0	-6.5	No			
			-6.5				

cpt08wm

XY Location:		cpt08wn	n: (95, -13)	
Layer #	Туре	Thickness [m]	Elevation [m]	Drained at Bottom
1 2 3	Crustal Layer Recent Alluvium Older Alluvium	1 6.2 0	0 -1 -7.2	No Yes No


XY Location:		cpt14: (110, -5)					
Layer #	Туре	Thickness [m]		Elevation [m]	Drained a Bottom		
1	Crustal Layer	1		0	No		
2	Recent Alluvium	9		-1	Yes		
3	Older Alluvium	2.5		-10	No		
				-10 -12,5 -19 m			

XY Location:		cpt	:01: (120, -5)	
Layer #	Туре	Thickness	[m] Elevatio	n [m] Drained at Bottom
1	Crustal Layer	1	0	No
2	Recent Alluvium	3.7	-1	Yes
3	Older Alluvium	0	-4.7	No
			-4.7	

XY Location:		cpt09: (20, -55)					
Layer #	Туре	Thickness	[m] Elevatio	on [m] Drained a Bottom			
1	Crustal Layer	1	0	No			
2	Recent Alluvium	1.5	-1	Yes			
3	Older Alluvium	0	-2.5	No			
			-19 m				

XY Location:	cpt08: (40, -58)					
Layer #	Туре	Thickness [m] Elevation [m]	Drained at Bottom		
1	Crustal Layer	1	0	No		
2	Recent Alluvium	1.7	-1	Yes		
3	Older Alluvium	0	-2.7	No		
			-19 m			

XY Location:		cpt12: (70, -55)				
Layer #	Туре	Thickne	ss [m]	Elevation [m]	D	rained at Bottom
1	Crustal Layer	1	()	No	
2	Recent Alluvium	1.1	-	1	Yes	
3	Older Alluvium	0	-	2.1	No	
				-19 m		

XY Location:		cpt13: (105, -58)					
Layer #	Туре	Thicknes	ss [m]	Elevation [m]		nined at ottom	
1	Crustal Layer	1		D	No		
2	Recent Alluvium	9		-1	Yes		
3	Older Alluvium	2.95		-10	No		
				-10 -12.95 -19 m			

XY Location:				cpt03: (120,	-58)	
Layer	#	Туре	Thickne	ess [m]	Elevation [m]	Drained at Bottom
1	Crust	tal Layer	1	0		No
2	Rece	nt Alluvium	7.3	-1	L	Yes
3	Olde	r Alluvium	0	-8	3.3	No
					8.3 19 m	

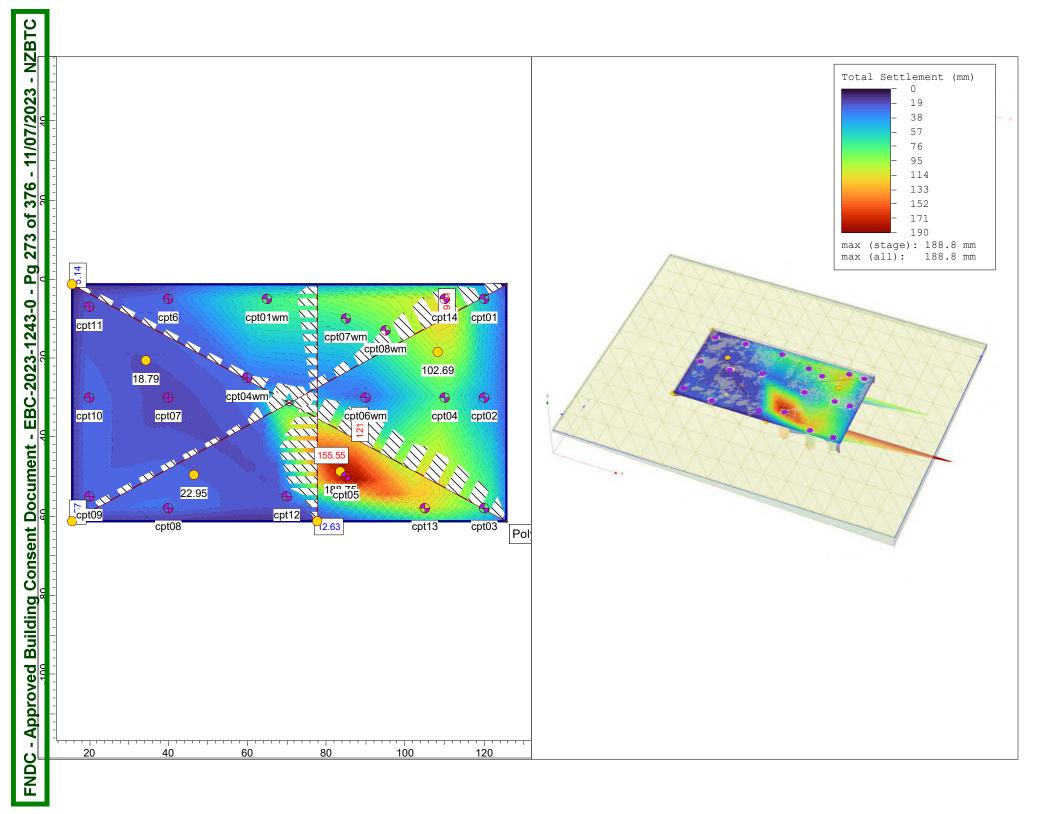
XY Location:		cpt10	cpt10: (20, -30)			
Layer #	Туре	Thickness [n	n] Elevation [m]	Drained at Bottom		
1	Crustal Layer	1	0	No		
2	Recent Alluvium	1.7	-1	Yes		
3	Older Alluvium	0	-2.7	No		
			-19 m			

XY Location:				cpt07: (40,	-30)	
Layer	#	Туре	Thickn	ess [m]	Elevation [m]	Drained at Bottom
<u>l</u>	Crus	tal Layer	1		0	No
2	Rece	ent Alluvium	0.9		-1	Yes
3	Olde	er Alluvium	0		-1.9	No
					-19 m	

XY Location:		cpt04: (110, -30)					
Layer #	Туре	Thic	kness [m]	Elevation [m]		rained at Bottom	
1	Crustal Layer	1	C		No		
2	Recent Alluvium	6	-	1	Yes		
3	Older Alluvium	0	-	7	No		
				-7 -19 m			

XY Location:		ср	t02: (120, -30)		
Layer #	Туре	Thickness	[m] Elevatio	n i mi	ined at ottom
1	Crustal Layer	1	0	No	
2	Recent Alluvium	3.1	-1	Yes	
3	Older Alluvium	0	-4.1	No	
			-4.1		

cpt04wm

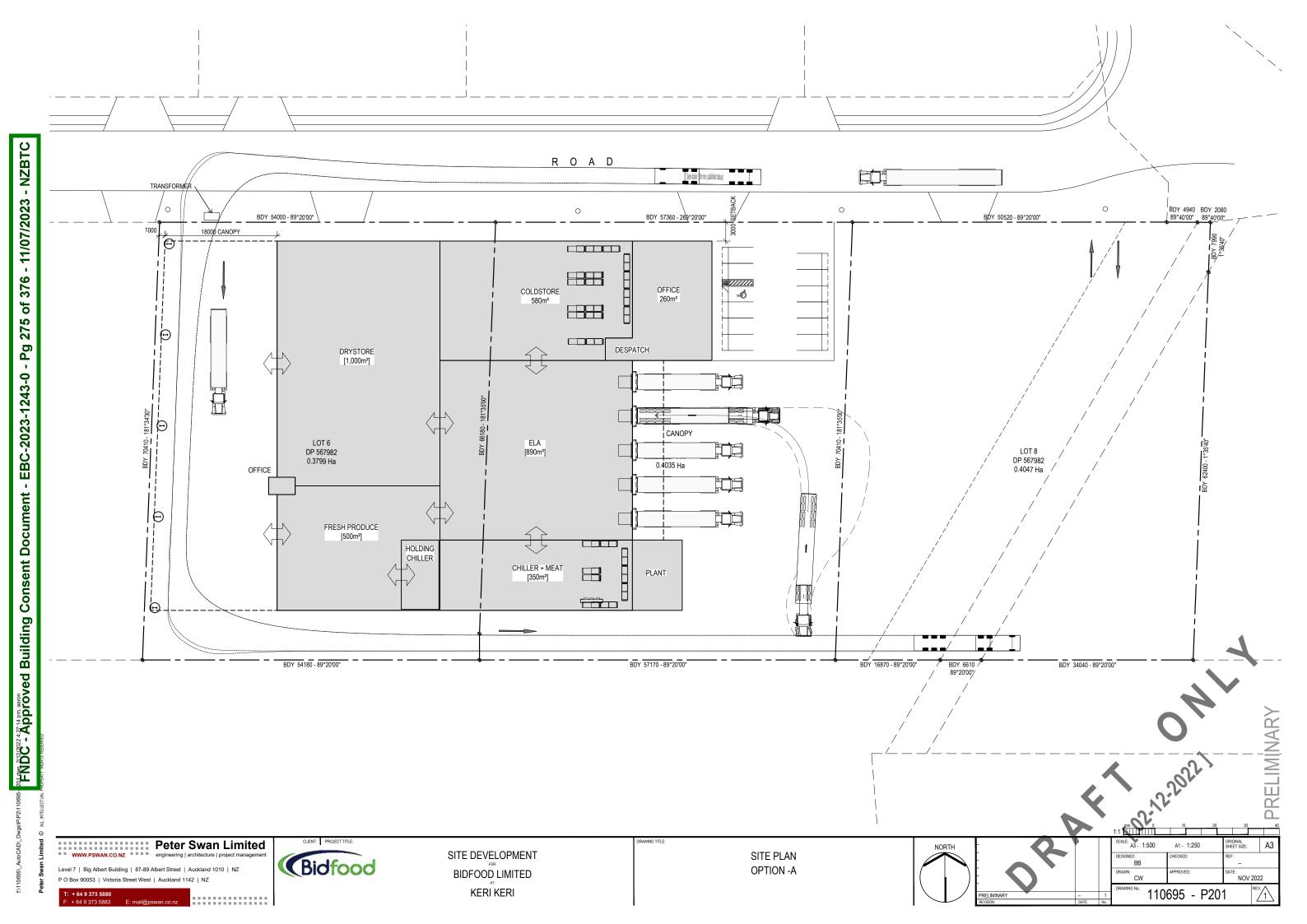

XY Location:		cpt04wm: (60, -25)				
Layer #	Туре	Thickness [m]	Elevation [m]	Drained at Bottom		
	Crustal Layer	1	0	No		
	Recent Alluvium	1.7	-1	Yes		
}	Older Alluvium	0	-2.7	No		
			-19 m			

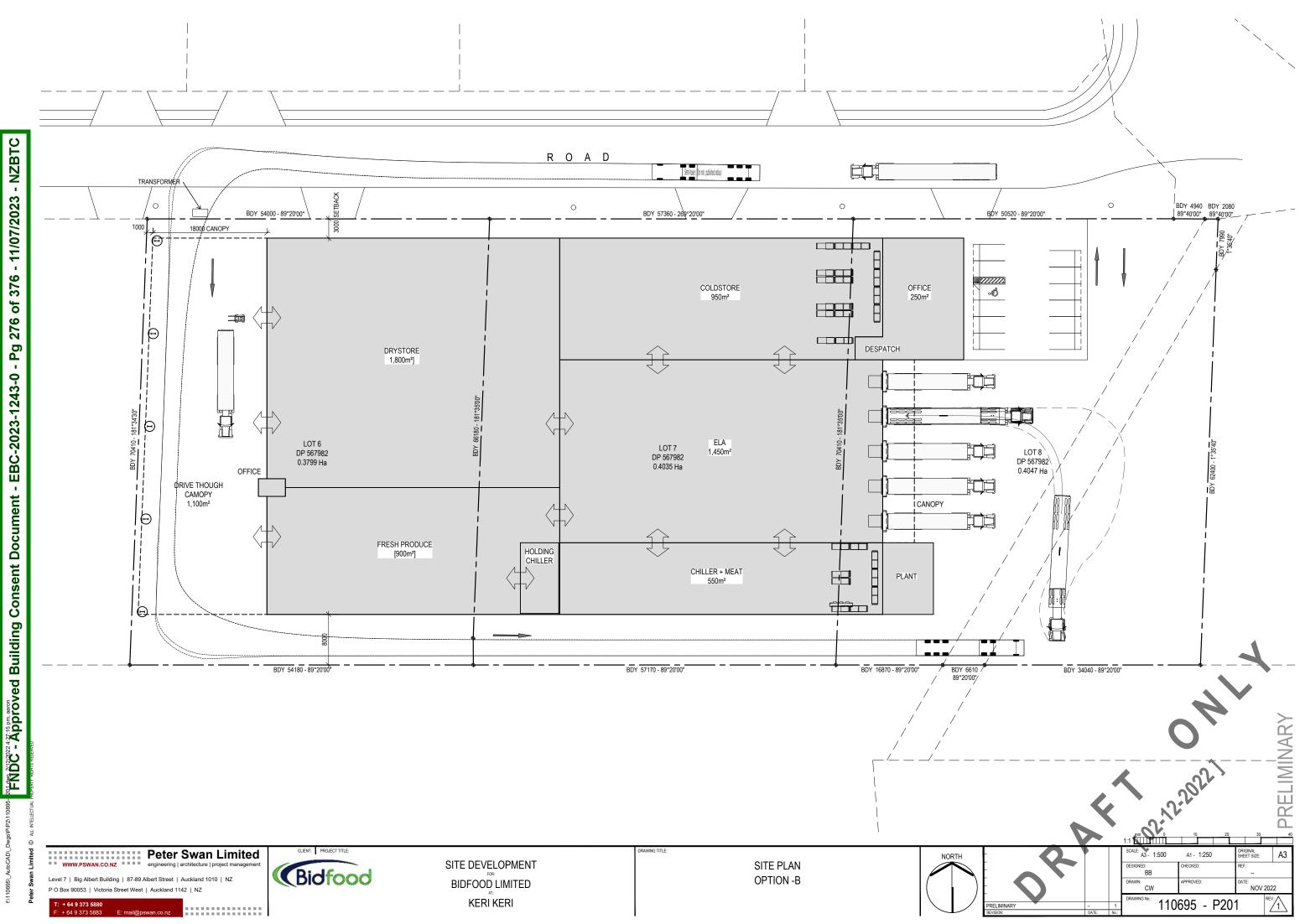
cpt06wm

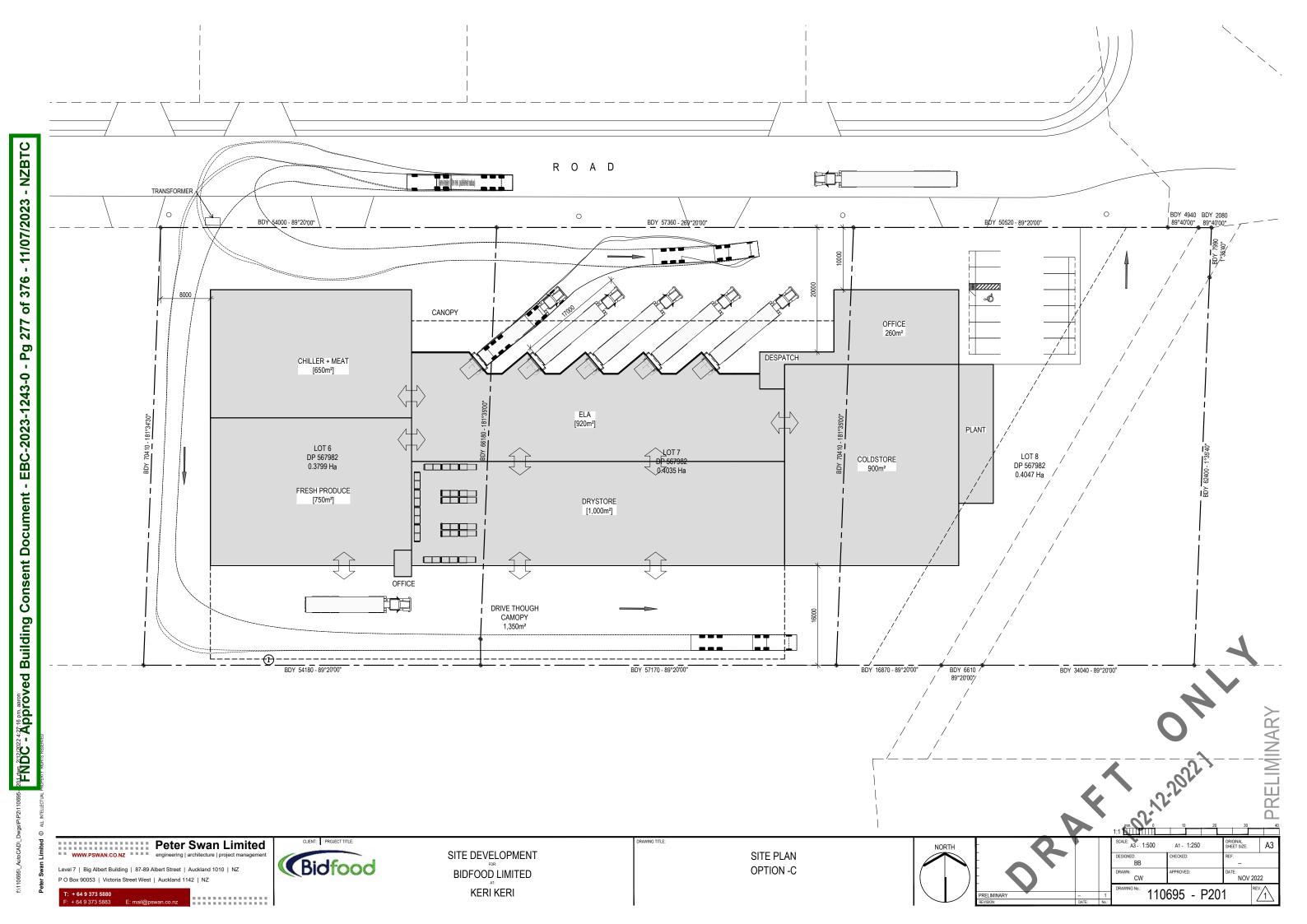
XY Location:		cpt06wm	n: (90, -30)	
Layer #	Туре	Thickness [m]	Elevation [m]	Drained at Bottom
1 2 3	Crustal Layer Recent Alluvium Older Alluvium	1 1.6 0	0 -1 -2.6 -2.6	No Yes No

Soil Properties

Property	Crustal Layer	Recent Alluvium	Older Alluvium
Color			
Unit Weight [kN/m3]	17	15	17
Saturated Unit Weight [kN/m3]	17	15	17
Poisson's Ratio	0.35	0.35	0.35
ко	1	1	1
Primary Consolidation	Enabled	Enabled	Enabled
Material Type	Linear	Linear	Linear
mv [m2/kN]	0.0001	0.0003	0.00025
mvur [m2/kN]	0.0001	0.0003	0.00025
Cv [m2/s]	-	1e-05	1e-07
Cvr [m2/s]	-	-	-
B-bar	1	1	1
Undrained Su A [kN/m2]	0	0	0
Undrained Su S	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8
Piezo Line ID	1	1	1


Preliminary Geotechnical Appraisal Report Proposed Industrial Development Lots 6-8 Kahikatearoa Lane Extension, Waipapa Peter Swan Limited


January 2023


Appendix D – Provided Development Drawings

22 189

22 189_preliminary geotechnical investigation reporthttps://haighworkman2020.sharepoint.com/sites/suitefiles/shared documents/clients/peter swan limited/jobs/22 189 - kahikatearoa lane, waipapa (lot 1 dp 178287)/engineering/pgar/22 189_preliminary geotechnical investigation report.docx

STORMWATER DESIGN

FOR

BIDFOOD LIMITED PROPOSED DISTRIBUTION CENTRE

AT

LOTS 6-9 KAHIKATEAROA LINE, WAIPAPA

PETER SWAN LTD CONSULTING ENGINEERS AUCKLAND

T: 0-9-373 5880 E: mail@pswan.co.nz

1. STORMWATER MANAGEMENT OVERVIEW

a. Roof Areas

Stormwater from the building roof areas is collected by a system of external gutters and downpipes sized in accordance with E2. The downpipes have leaf guards and first flush devices incorporated in them to reduce the debris entering the system as the roof water will be re-used on site. The roof water is piped to underground storage tanks and then in turn pumped into above ground storage tanks.

If the storage tanks are full the stormwater will overflow from the underground storage and be discharged into the public stormwater system.

b. Yard areas

Stormwater from yard areas is collected by inground cesspit chambers with sediment filters then discharged into the public stormwater system via an inground pipe system

c. Stormwater Attenuation

As required by the site consent notices the stormwater discharge from site is attenuated and this is achieved using an underground detention tank located under the office carparking area. The piped stormwater flows from both the yard areas and roof tank overflow is connected to a 154m3 rainsmart storage tank which then discharges through orifice plates into the public stormwater system in Kahikatearoa lane.

APPENDIX A

Stormwater Calculations

DESIGN RAINFALL

SITE:- BIDFOOD WIPAPA

DESIGN RAINFALL INTENSITIES Raifall intensities for the required design rainfall ever NEWA & E1/AS1 Appendix A	nts		
2% AEP 20 minute rainfall eve	ent = 47	' .2 r	nm/hr
10% AEP 20 minute rainfall eve	ent = 71	.3 r	nm/hr
2% AEP 24 hour rainfall eve	ent = 4	<mark>8</mark> r	nm/hr
10% AEP 10min rainfall eve	ent = 97	' .9 r	nm/hr
Rain event for sizing Piped Systems:-			
10min 10% AEP intensity	i= 97	' .9 r	nm/hr
Climate Change Fact	tor = 1.	16	
i.e. Design Rainfall Intens	ity = 11	<mark>3.6</mark> r	nm/hr
DESIGN RUNOFF			
Buildings and Paved areas AREA RUNC	DFF		

ullulliys and Faveu aleas	ANEA		KUNOFF		
Building roofs =	11,732	m ²	20,001.0	l min	333.3 l /s
Paved Yards =	4,638	m ²	7,467.7	l min	124.5 l /s
Aruba Grove Frontage =	1,974	m ²	1,308.7	l min	21.8 <i>l s</i>
Total =	18,344	m ²	28,777	l min	479.6 <i>l s</i>

IMPERVIOUS AREAS & STORMWATER RUNOFF

SITE:-	BIDFOOD WIPAPA						
CATCHMENT:-	LOT 1 - POST-DEVELOPME	INT					
	Total Catchme	ent Area =	11,867	m²			
	Buildings and Paved areas	44	2				
	Building roofs =	11,732	m ²				2
	Paved Yards =	4,638	m ²	Tota	al Impervious =	16,370	m²
	Total Landscaped Area =	-4,503	m ²			138%	coverage
DESIGN STORI	M						
	E1/AS1 Appendix A						
		10min 10%	6 AEP inte	nsitv i =	97.9	mm/hr	
			te Change	•			
	i.		Rainfall Ir			mm/hr	
	Using the Rational Method:						
		F	Runoff = C	i A/3600	l sec		
ROOF AREAS		· <i>.</i>					
	(Refer attached marked-up s	ite plan) AREA		DUNOFE			
	Coldstore Roof =	3984	m ²	RUNOFF 6,792	l Imin	113.2	/c
Г	rive-through Canopy Roof =	952	m m ²	1,623	-	27.0	l/s
	Office / ELA canopy =	6667	m ²	11,366		189.4	l/s
	Pod Roof =	41	m^2	70	l min	1.2	l/s
	Plantroom Roof =	88	m ²	150	l min	2.5	l/s
		11,732	m ²	20,001	-		l/s
PAVED AREAS		11,752		20,001	c jnut	333	1/5
	(Refer attached marked-up s	ite plan)					
	· ·	. ,		RUNOFF			
	Carpark =	565	m ²	909.7	l min	15.2	l/s
	Drive =	1026	m ²	1,652.0	l min	27.5	l/s
	Yard =	3013	m ²	4,851.3	l min	80.9	l/s
	Lunch Area =	34	m²	54.7	l min	0.9	l/s
	Total =	4,638	m ²	7,468	l min	124	l/s
LANDSCAPED	AREAS						
			0				
	landscape area A1 =	94	m ²	62.3	l min	1.0	l/s
	landscape area A2 =	240	m ²	159.1	l min	2.7	l/s
	landscape area A3 =	1273	m ²	844.0	l min	14.1	l/s
	landscape area A4 =	58	m ²	38.5	l min	0.6	l/s
	landscape area A5 =	101	m ²	67.0	l min	1.1	l/s
	landscape area A6 =	208	m ²	137.9	l min	2.3	l/s
	Total =	1,974	m ²	1,309	l min	22	l/s
TOTAL RUNOF	F						

P rain event = <mark>112</mark> l/s Increase = **367** l/s

l/s

STORMWATER ROOF RUNOFF

SITE:- BIDFOOD WIPAPA

RUNOFF:-

Design rainfall intensity required is 10 minute 10% AEP rainfall event.

10min 10% AEP intensity i = 113.6 mm/hr

i.e.	Design	runoff for	sizing	drainage	pipes :	-
NATOURAENT 4 TO			DTAL			

CATCHMENT 1 TO UNDERGROUND TANKS	0 1 1						
CATCHMENT		AREA		С	I	RUNOFF	
DRIVE-THRU CANOPY	DP13	306	m ²	0.9		8.7	l s
DRIVE-THRU CANOPY	DP14	318	m²	0.9		9.0	l s
DRIVE-THRU CANOPY	DP15	328	m²	0.9		9.3	l s
WARHOUSE ROOF	DP1	332	m²	0.9		9.4	l s
WARHOUSE ROOF	DP2	332	m²	0.9		9.4	l s
WARHOUSE ROOF	DP3	332	m²	0.9		9.4	l s
WARHOUSE ROOF	DP4	332	m²	0.9		9.4	l s
WARHOUSE ROOF	DP5	332	m²	0.9		9.4	l s
WARHOUSE ROOF	DP6	332	m²	0.9		9.4	l s
POD	DP16	41	m ²	0.9		1.2	l s
ELA CANOPY	DP20	73	_m ²	0.9	_	2.1	l s
		3058	m ²		Total =	86.9	l s

Pipe capacity from AS/NZS 3500.3 Figure 5.4.11.2, using k = 0.015 for uPVC & k=0.6 for conc.

Node	UPST	REAM	Pipe 🗄	GRADE	Capacity	Flow	DIST	fall	DOWNS	STREAM	Cover
ID	G.L	I.L.	(mm)	(1:x)	(l/sec)	(I/sec)	(m)	(mm)	G.L	I.L.	(mm)
DP13	79.20	83.00	STARTING POINT								-3,960
		OUT	150	200	18	8.7	19.2	96		IN	
DP14 Intersection									79.20	82.90	-3,864
DP14 Intersection	79.20	82.90									-3,714
		OUT	0	200	18	17.7	16.2	81		IN	
150 to 225 Reducer									79.20	82.82	-3,633
150 to 225 Reducer	79.20	82.82									-3,858
		OUT	225	200	48	17.7	0.7	4		IN	
DP15 Intersection									79.20	82.82	-3,854
DP15 Intersection	79.20	82.82									-3,779
		OUT	150	200	18	27.0	0.9	5		IN	
Change of Direction									79.20	82.82	-3,775
Change of Direction	79.20	82.82									-3,850
		OUT	225	200	47	27.0	1.3	7		IN	
Dropper/First Flush									79.20	82.81	-3,843
Dropper/First Flush	79.21	78.51									470
		OUT	225	200	47	27.0	16.9	85		IN	
SWMH-T1									79.05	78.42	395
SWMH-T1	79.05	78.32									495
		OUT	225	150	59	27.0	10.0	67		IN	
DP1 Intersection	70.00	70.00							78.98	78.25	491
DP1	79.00	78.26	150			• •					580
		OUT	150	200	18	9.4	1.5	8	70.00	IN	500
DP1 Intersection	70.00	70.05							78.98	78.25	568
DP1 Intersection	78.98	78.25	005	450	50	00 F		74		15.1	491
		OUT	225	150	59	36.5	11.1	74	70.00	IN 70.10	505
DP2 Intersection	70.00	78.19							78.92	78.18	505
DP2	78.93	0UT	150	200	40	0.4	1.5	0		IN	580
		001	150	200	18	9.4	1.5	8	78.92		F77
DP2 Intersection	78.92	78.18							10.92	78.18	577 505
DP2 Intersection	10.92	OUT	225	150	59	45.9	10.4	69		IN	505
DP3 Intersection		001	225	150	59	45.5	10.4	09	78.85	78.11	504
DP3 Intersection	78.86	78.12							70.00	70.11	580
	10.00	OUT	150	200	18	9.4	1.5	8		IN	500
DP3 Intersection		001	100	200	10	0.4	1.5	0	78.85	78.11	577
									70.00	70.11	511

DP3 Intersection	78.85	78.11									504
		OUT	225	150	59	55.3	11.1	74		IN	
225 to300 Reducer									78.79	78.04	519
225 to300 Reducer	78.79	78.04									444
		OUT	300	150	130	45.9	1.0	7		IN	
DP4 Intersection									78.78	78.03	440
DP4	78.79	78.04									590
		OUT	150	200	18	9.4	1.5	8		IN	
DP4 Intersection									78.78	78.03	587
DP4 Intersection	78.78	78.03									440
		OUT	300	150	130	64.8	11.1	74		IN	
DP5 Intersection									78.71	77.96	444
DP5	78.72	77.97									590
		OUT	150	200	18	9.4	1.5	8		IN	
DP5 Intersection									78.71	77.96	587
DP5 Intersection	78.71	77.96									444
		OUT	300	150	130	74.2	11.1	74		IN	
DP6 Intersection									78.64	77.88	448
DP6	78.65	77.89									600
		OUT	150	200	18	9.4	1.5	8		IN	
DP6 Intersection									78.64	77.88	597
DP6 Intersection	78.64	77.88									448
		OUT	300	150	130	83.6	10.2	68		IN	
DP16 Intersection									78.58	77.81	456
DP16	78.59	77.82									660
		OUT	100	100	8	1.2	1.5	15		IN	
DP16 Intersection									78.58	77.81	665
DP16 Intersection	78.58	77.81									456
		OUT	300	150	130	84.8	9.7	65		IN	
SWMH-T2									78.52	77.75	461
SWMH-T2	78.52	77.54									671
		OUT	300	150	130	84.8	28.5	190		IN	
Tank1									78.13	77.35	471
DP20	78.00	77.50			_						390
		OUT	100	120	8	2.1	17.7	148		IN	
Tank1									78.13	77.35	667

i.e. Design runoff for sizing drainage pipes :-CATCHMENT 2 TO UNDERGROUND TANKS

CATCHMENT		AREA		С	I	RUNOFF	
WARHOUSE ROOF	DP7	332	m ²	0.9		9.4	l s
WARHOUSE ROOF	DP8	332	m ²	0.9		9.4	l s
WARHOUSE ROOF	DP9	332	m ²	0.9		9.4	l s
WARHOUSE ROOF	DP10	332	m ²	0.9		9.4	l s
WARHOUSE ROOF	DP11	332	m ²	0.9		9.4	l s
WARHOUSE ROOF	DP12	332	m ²	0.9		9.4	l s
OFFICE DP	DP22	135	m²	0.9		3.8	l s
OFFICE DP	DP21	145	m ²	0.9	_	4.1	l s
		2272	m ²		Total =	64.6	l s

		-	AS/NZS 3500.3	-	-			1			
Node		REAM	Pipe ø	GRADE	Capacity	Flow	DIST	fall		STREAM	Above FFL
ID	G.L	I.L.	(mm)	(1:x)	(l/sec)	(l/sec)	(m)	(mm)	G.L	I.L.	(mm)
DP7	78.90	78.10	STARTING POINT	000	40		40.0	04			640
		OUT	150	200	18	9.4	12.2	61	70.07	IN 70.04	474
225 to 150 Reducer	70.67	79.04							78.67	78.04	471
225 to 150 Reducer	78.67	78.04 OUT	225	200	48	9.4	0.9	5		IN	396
DP8 Intersection		001	225	200	40	9.4	0.9	5	78.67	78.03	401
DP8	78.85	78.04							10.01	70.05	650
	10.00	OUT	150	200	18	9.4	1.8	9		IN	000
DP8 Intersection		001	,	200		0.4	1.0	Ŭ	78.67	78.03	479
DP8 Intersection	78.67	78.03							10.01	10.00	401
	10.01	OUT	225	200	48	18.9	11.1	56		IN	101
DP9 Intersection		001	220	200					78.64	77.98	426
DP9	78.80	77.99									650
		OUT	150	200	18	9.4	1.8	9		IN	
DP9 Intersection									78.64	77.98	499
DP9 Intersection	78.64	77.98									426
		OUT	225	200	48	28.3	11.0	55		IN	
DP10 Intersection									78.59	77.92	431
DP10	78.76	77.93									670
		OUT	150	200	18	9.4	1.8	9		IN	
DP10 Intersection									78.59	77.92	509
DP10 Intersection	78.59	77.92									431
		OUT	225	200	48	37.7	11.1	56		IN	
DP11 Intersection									78.55	77.87	447
DP11	78.70	77.88									660
		OUT	150	200	18	9.4	1.8	9		IN	
DP11 Intersection									78.55	77.87	519
DP11 Intersection	78.55	77.87									447
		OUT	225	200	48	47.2	7.6	38		IN	
225 to300 Reducer									78.55	77.83	484
225 to300 Reducer	78.55	77.83						_			409
		OUT	300	200	97	47.2	1.0	5	70 55	IN 77.00	
DP12 Intersection	70.70	77.04							78.55	77.83	414
DP12	78.79	77.84	150	200	40	0.4	25	40		IN	790
		OUT	150	200	18	9.4	2.5	13	70 55		560
DP12 Intersection DP12 Intersection	78.55	77.83							78.55	77.83	562 414
DP12 Intersection	10.00	OUT	300	200	97	56.6	22.9	115		IN	414
SWMH-T3		001	500	200	51	50.0	22.9	115	78.50	77.71	479
SWMH-T3 SWMH-T3	78.50	77.47							10.00	11.11	719
	1 0.00	OUT	300	200	97	56.6	11.1	56		IN	
DP22 Intersection		001		200		00.0		00	78.96	77.42	1,234
DP22	79.11	78.46									540
		OUT	100	100	8	3.8	2.0	20		IN	
DP22 Intersection		001			Ŭ	0.0	2.0	Drop-In	78.96	78.44	410
DP22 Intersection	78.96	77.42						2.50 11			1,234
		OUT	300	200	97	60.4	4.3	22		IN	.,
DP21 Intersection	1	-							79.13	77.39	1,426

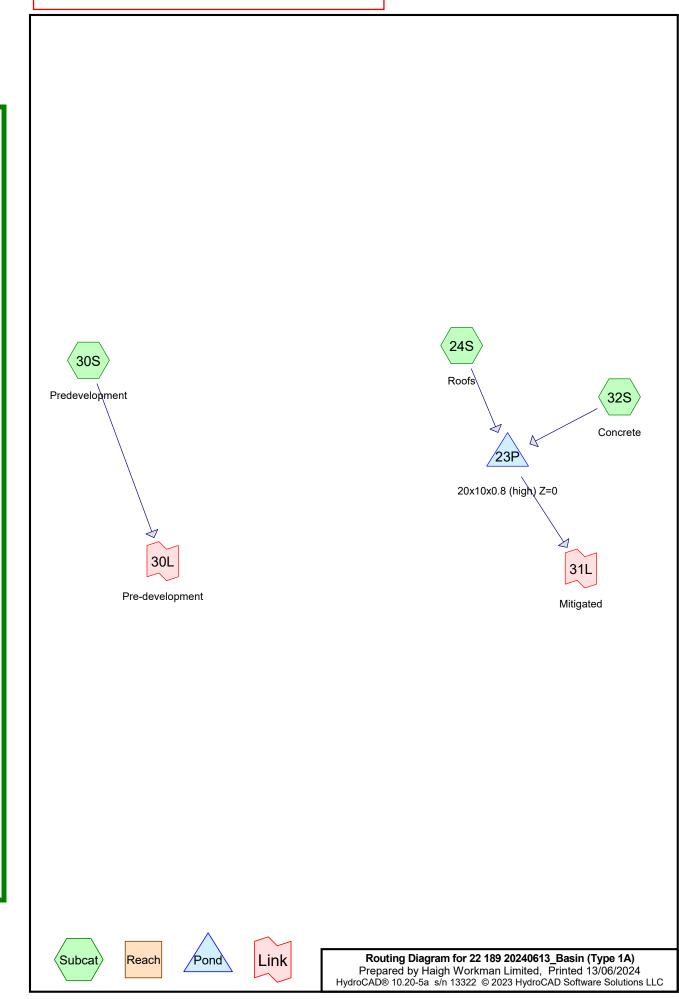
DP21	79.11	78.61									390
		OUT	100	100	8	4.1	3.0	30		IN	
DP21 Intersection								Drop-In	79.13	78.58	440
DP21 Intersection	79.13	77.39									1,426
		OUT	300	200	97	64.6	9.0	45		IN	
Tank									78.14	77.35	481

STORMWATER DRAINAGE DESIGN

10min 10% AEP intensity = **113.6** mm/hr Q = CiA/3600

BIDFOOD WIPAPA

CATCHMENT 1


SITE:-

DRIVE THROUGH ENTRY

				10	11111 1070		nony			Q	0
			Catch	ment	AREA		С		RUNOFF		
Drive-Thr	u Drive		CP 1		23	m ²	0.85		0.6	l s	
	Pipe capa	city from	AS/NZS 3500				15 for uP	VC& k=	0.6 for cor	nc.	
Node		REAM	Pipe ø		Capacity		DIST	fall		STREAM	cover
ID	G.L.	<u>I.L.</u>	(mm)	(1:x)	(l/sec)	(I/sec)	(m)	(mm)	G.L.	I.L.	(mm)
CP 1	78.71	78.06	STARTING POI		40		4.5	0		18.1	490
SWMH 1		OUT	150	200	18	0.6	1.5	8	78.67	IN 78.05	458
SWMH 1	78.67	77.80	COS Ex. PIPE [70.07	70.00	633
Owwith t	10.01	OUT	225	200	48	0.6	1.5	8		IN	000
Ex. SWMH 07								•	78.46	77.80	430
CATCHMENT 1		DRIVE,	YARD, LC			CARPAR		113.6	mm/hr	Q =	CiA/3600
			• • •				-				
	Mar. 14		Catch	ment	AREA	2	С		RUNOFF		
Humes	-		CP2		1026	m^2_2	0.85		27.5	l [s	
Humes	-		CP3		1563	m^2_2	0.85		41.9	l [s	
	Cesspit		CP4a & 4	C	467	m ²	0.85		12.5	l s	
	dscape		A4		58	m2	0.35		0.6	l [s	
	Cesspit		CP5		81	m2 m²	0.85		2.2	l s	
	ntroom		DP17		54		0.9		1.5	l s	
	ntroom		DP18 DP19		34 73	m2 m2	0.9		1.0 2.1	l [s l].	
	Canopy Cesspit		CP6		73 221	m2	0.9 0.85		2.1 5.9	l s l s	
	Cesspit		CP7		246	m2	0.85		6.6	l s	
	Cesspit		CP8		435	m2	0.85		11.7	l s	
Retention Tank O	-		Tank1				0.00		89.0	l s	
	Carpark		CP9a & 91	c	446	m2	0.85		12.0	l js	
	Carpark		CP10		119	m2	0.85		3.2	l s	
Lunc	ch Area		CP11		34	m2	0.85		0.9	l s	
Lan	dscape		A1		94	m2	0.35		1.0	l s	
	dscape		A2		240	m2	0.35		2.6	l s	
	dscape		A3		1273	m2	0.35		14.1	l s	
	dscape		A5		101	m2	0.35		1.1		
Lan	dscape		A6		208	m2	0.35		2.3	l s	
	Dine cana	city from	AS/NZS 3500) 3 Eigure 5	/ 11 2 us	ing $k = 0.0$	15 for uE		0 6 for cor		
Node		REAM	Ρipe φ		Capacity		DIST	fall		STREAM	cover
ID	G.L.	I.L.	(mm)	(1:x)	(l/sec)	(l/sec)	(m)	(mm)	G.L.	I.L.	(mm)
CP2	78.25	77.43	STARTING PO		/	1\4					590
		OUT	225	200	48	27.5	56 .0	280		IN	
SWMH 5									77.92	77.15	540
CP3	77.66	77.04	STARTING PO								390
		OUT	225	200	48	41.9	12.2	61		IN	
SWMH 5	77.00	70.04							77.92	76.97	711
SWMH 5	77.92	76.94 OUT	200			60.4	20 F	0		INI	666
Painemart		OUT	300	-		69.4	20.5	0	78.65	IN 76.94	1,396
Rainsmart	78.60	78.05	STARTING POL	NT					10.00	10.94	
	10.00				9	1.5	3.5	44		IN	-110
Rodding Eve Intersection		501		00	Ŭ		0.0	17	78.60		484
	78.60	78.02									470
5,5			1						1		-
		OUT	100	<u>80</u>	9	1.5	0.5	6		IN	
DP17 Rodding Eye Intersection Rodding Eye	78.60 78.60	78.05 OUT 78.02	STARTING POI	80	9	1.5	3.5	44	78.60	IN 78.01	440 484 470

Rodding Eye Intersection	78.60	78.01									484
Rodding Eye Intersection	70.00	OUT	100	80	9	1.5	8.1	101		IN	404
DP18 Intersection									78.53	77.91	515
DP18	78.60	77.98									510
		OUT	100	80	9	1.0	5.9	74	70 50	IN 77.01	E 4 4
DP18 Intersection DP18 Intersection	78.53	77.91							78.53	77.91	514 515
DF 10 Intersection	70.00	OUT	100	80	9	2.5	0.6	8		IN	010
Change of Direction					•			-	78.45	77.90	442
Change of Direction	78.45	77.90									442
		OUT	100	<mark>80</mark>	9	2.5	12.0	150		IN	
DP17 Intersection								(Drop-In)	78.33	77.75	472
CP5	78.24	77.30	150	150	20	2.2	10	10		INI	780
DP17 Intersection		OUT	150	150	20	2.2	1.9	13	78.33	IN 77.29	883
DP17 Intersection	78.33	77.29							70.00	11.25	883
		OUT	150	150	20	4.7	2.2	15		IN	
DP 19 Intersection									78.18	77.27	747
DP19	78.20	77.59									500
		OUT	100	80	8	2.1	5.9	74	70.40	IN	
DP 19 Intersection	78.18	77.27						(Drop-In)	78.18	77.52	554 747
DP 19 Intersection	78.18	OUT	150	150	20	6.7	2.3	15		IN	/4/
CP6 Intersection		001	100	100	20	0.7	2.0	10	78.14	77.26	723
CP6	78.12	77.51									450
		OUT	150	150	20	5.9	0.7	5		IN	
CP6 Intersection								(Drop-In)	78.14	77.51	475
CP6 Intersection	78.14	77.26						-			723
		OUT	150	150	20	12.7	7.1	47	79.06	IN 77.01	600
CP7 Intersection CP7	78.01	77.46							78.06	77.21	690 390
	70.01	OUT	150	150	20	6.6	3.0	20		IN	550
CP7 Intersection		001	100	100		0.0	0.0	(Drop-In)	78.06	77.44	460
CP7 Intersection	78.06	77.21						· · · ·			690
		OUT	150	150	20	19.3	14.5	97		IN	
SWMH 4									78.09	77.11	817
CP8	77.92	77.18	STARTING POINT		47	44 7	10.0	CE.		INI	580
SWMH 4		OUT	150	200	17	11.7	12.9	65	78.09	IN 77.12	815
Tank1	78.20	77.35	STARTING POINT						70.05	11.12	540
		OUT	300	200	97	89.0	5.9	30		IN	
SWMH 4									78.09	77.32	460
SWMH 4	78.09	77.09									690
		OUT	300	150	125	119.9	12.8	85	70.07	IN	4.055
SWMH 3 CP10	78.28	77.73	STARTING POINT						78.67	77.00	1,355 390
CPTU	10.20	OUT	150	200	17	3.2	10.2	51		IN	390
SWMH 3		001	100	200		0.2	10.2	01	78.67	77.68	831
SWMH 3	78.67	76.97									1,385
		OUT	300	-		123.1	21.5	0		IN	
Rainsmart									77.94	76.97	655
Rainsmart	78.53	76.50				400.4	04.5	0		15.1	1,720
SWMH 2		OUT	300	-	- (75mm ()	123.1 rifice Size t	21.5	0	77.88	IN 76.50	1,070
CP9a & 9b	77.74	77.19	STARTING POINT		(7511111 01		o be de	termineu)	11.00	70.50	390
		OUT	150	200	17	12.0	4.5	23		IN	000
SWMH 2									77.88	77.17	553
SWMH 2	77.88	76.47									1,100
		OUT	300	150	125	135.0	13.5	90		IN	- 10
SWMH 1	77.00	70 70							77.40	76.38	710
CP4a & 4b	77.33	76.78 OUT	STARTING POINT 150	200	17	13.2	1.0	5		IN	390
SWMH 1		001	150	200	17	13.2	1.0	5	77.40	76.78	465
	+	70.05							11.40	10.10	740
SWMH 1	77.40	/6.35									
SWMH 1	77.40	76.35 OUT	300	150	125	148.2	3.5	23		IN	740

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (mm)	AMC
1	Type 1A-2yr	Type IA 24-hr		Default	24.00	1	129	2
2	Type 1A-5yr	Type IA 24-hr		Default	24.00	1	171	2

Rainfall Events Listing (selected events)

22 189 20240613_Basin (Type 1A) Prepared by Haigh Workman Limited HydroCAD® 10.20-5a s/n 13322 © 2023 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Area (sq-meters)	CN	Description (subcatchment-numbers)
4,480	98	(32S)
9,877	80	>75% Grass cover, Good, HSG D (30S)
5,397	98	Roof (24S)
19,754	89	TOTAL AREA

22 189 20240613_Basin (Type 1A) Prepared by Haigh Workman Limited HydroCAD® 10.20-5a s/n 13322 © 2023 HydroCAD Software Solutions LLC

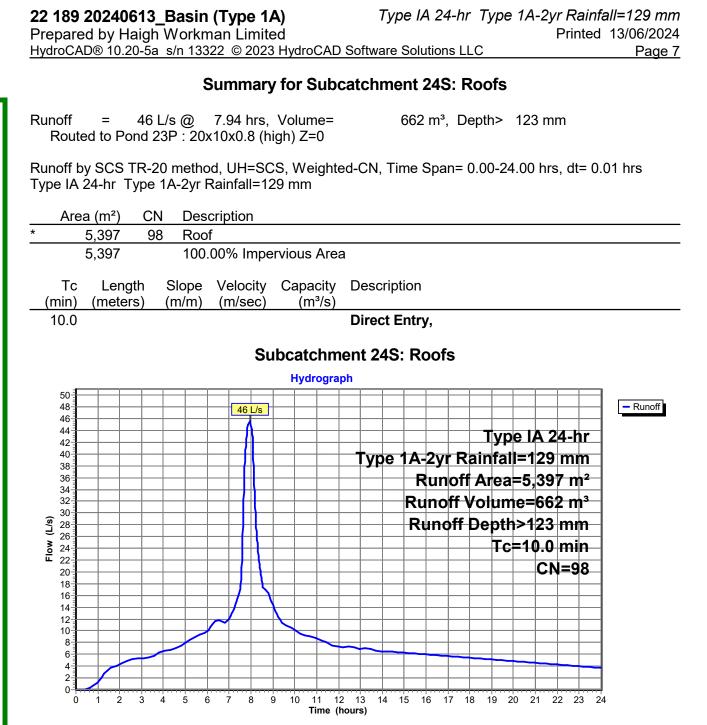
Printed 13/06/2024 Page 4

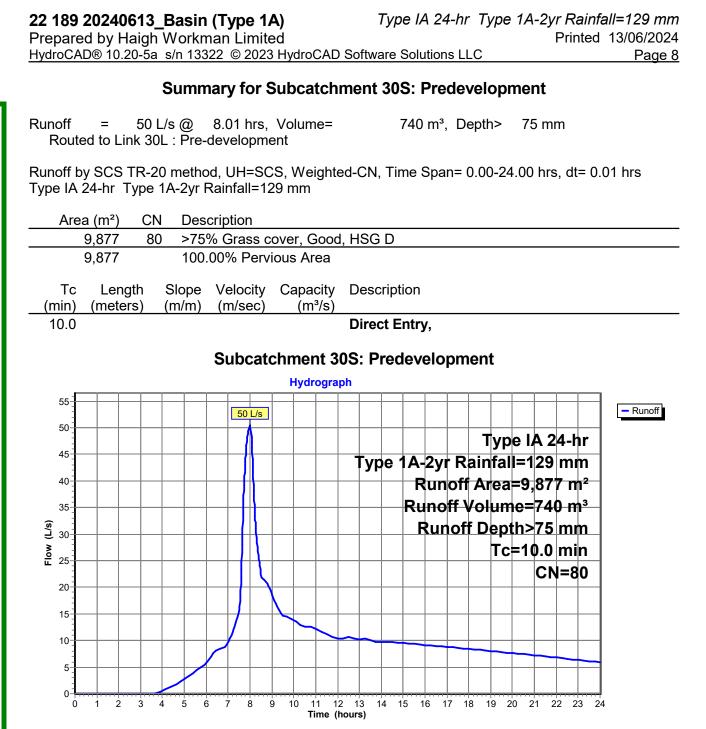
Soil Listing (selected nodes)

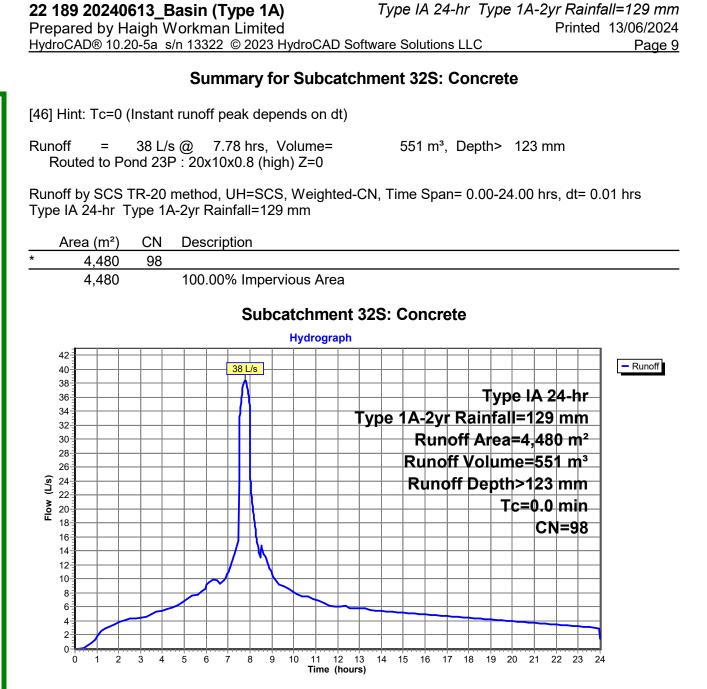
Area (sq-meters)	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
0	HSG C	
9,877	HSG D	30S
9,877	Other	24S, 32S
19,754		TOTAL AREA

22 189 20240613_Basin (Type 1A) Prepared by Haigh Workman Limited HydroCAD® 10.20-5a s/n 13322 © 2023 HydroCAD Software Solutions LLC

Printed 13/06/2024 Page 5


HSG-A (sq-meters)	HSG-B (sq-meters)	HSG-C (sq-meters)	HSG-D (sq-meters)	Other (sq-meters)	Total (sq-meters)	Ground Cover	Subca Numbi
 0	0	0	0	4,480	4,480		
0	0	0	9,877	0	9,877	>75% Grass cover, Good	
0 0	0 0	0 0	0 9,877	5,397 9,877	5,397 19,754	Roof TOTAL AREA	


Ground Covers (selected nodes)


Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment 24S: Roofs	Runoff Area=5,397 m ² 100.00% Impervious Runoff Depth>123 mm Tc=10.0 min CN=98 Runoff=46 L/s 662 m ³
Subcatchment 30S: Predevelopme	nt Runoff Area=9,877 m² 0.00% Impervious Runoff Depth>75 mm Tc=10.0 min CN=80 Runoff=50 L/s 740 m³
Subcatchment 32S: Concrete	Runoff Area=4,480 m ² 100.00% Impervious Runoff Depth>123 mm Tc=0.0 min CN=98 Runoff=38 L/s 551 m ³
Pond 23P: 20x10x0.8 (high) Z=0	Peak Elev=0.59 m Storage=118 m³ Inflow=83 L/s 1,213 m³ Outflow=49 L/s 1,196 m³
Link 30L: Pre-development	Inflow=50 L/s 740 m³ Primary=50 L/s 740 m³
Link 31L: Mitigated	Inflow=49 L/s 1,196 m³ Primary=49 L/s 1,196 m³

Total Runoff Area = 19,754 m²Runoff Volume = 1,953 m³Average Runoff Depth = 99 mm50.00% Pervious = 9,877 m²50.00% Impervious = 9,877 m²

Summary for Pond 23P: 20x10x0.8 (high) Z=0

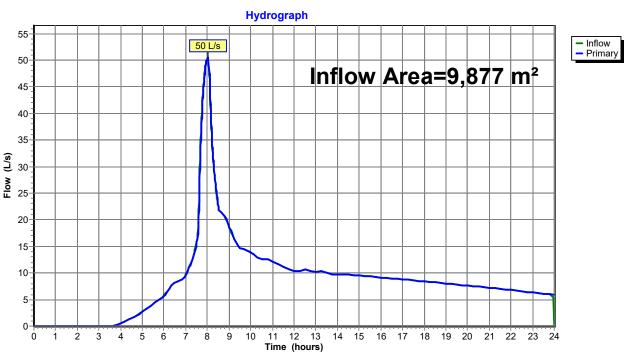
Inflow Area = 9,877 m²,100.00% Impervious, Inflow Depth > 123 mm for Type 1A-2yr event Inflow = 83 L/s @ 7.88 hrs, Volume= 1,213 m³ Outflow = 49 L/s @ 8.20 hrs, Volume= 1,196 m³, Atten= 41%, Lag= 19.2 min Primary = 49 L/s @ 8.20 hrs, Volume= 1,196 m³ Routed to Link 31L : Mitigated 1,196 m³
Routing by Sim-Route method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 0.59 m @ 8.20 hrs Surf.Area= 200 m² Storage= 118 m³
Plug-Flow detention time= 33.5 min calculated for 1,196 m³ (99% of inflow) Center-of-Mass det. time= 22.7 min(675.5 - 652.8)
Volume Invert Avail.Storage Storage Description
#1 0.00 m 160 m ³ 20.00 mW x 10.00 mL x 0.80 mH Prismatoid
Device Routing Invert Outlet Devices
#1 Primary 0.00 m 175 mm Vert. Orifice/Grate 2yr C= 0.650
Limited to weir flow at low heads
#2 Primary 0.59 m 170 mm Vert. Orifice/Grate C= 0.650 Limited to weir flow at low heads
Primary OutFlow Max=49 L/s @ 8.20 hrs HW=0.59 m TW=0.00 m (Dynamic Tailwater) -1=Orifice/Grate 2yr (Orifice Controls 49 L/s @ 2.04 m/s) -2=Orifice/Grate (Orifice Controls 0 L/s @ 0.07 m/s)
Pond 23P: 20x10x0.8 (high) Z=0
90 85 83 L/s 90 90 90 90 90 90 90 90 90 90 90 90 90
³⁰ 75 Inflow Area=9,877 m ²
Peak Elev=0.59 m

11 12 13 Time (hours) 14 15

16 17 18 19 20 21 22 23

24

35-30-25-20-15-10-5-0-


0 1

2 3 4 5 6 7 8 9 10

Summary for Link 30L: Pre-development

Inflow Are	a =	9,877	m ² , 0.00% Imperviou	s, Inflow Depth >	75 mm	for Type 1A-2yr event
Inflow	=	50 L/s @	8.01 hrs, Volume=	740 m³		
Primary	=	50 L/s @	8.02 hrs, Volume=	740 m³, At	ten= 0%,	Lag= 0.6 min

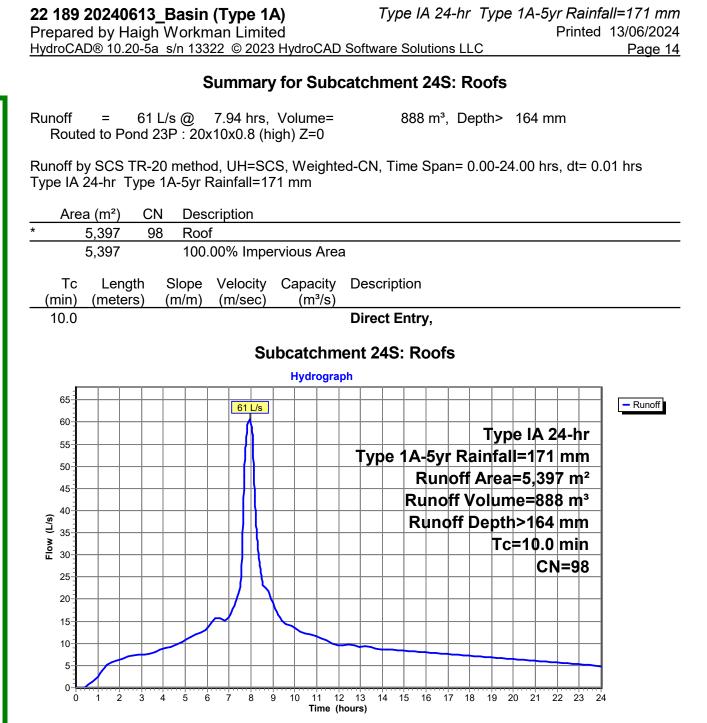
Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

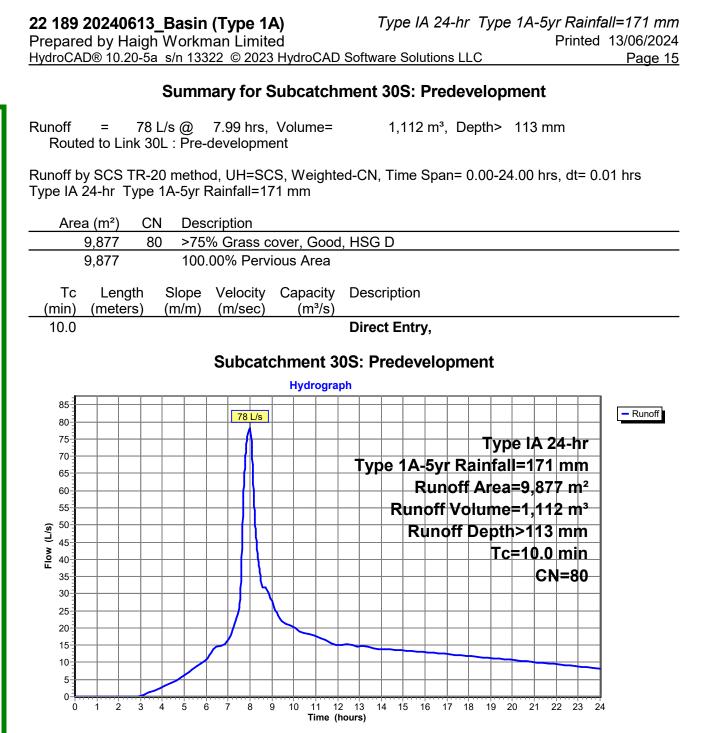


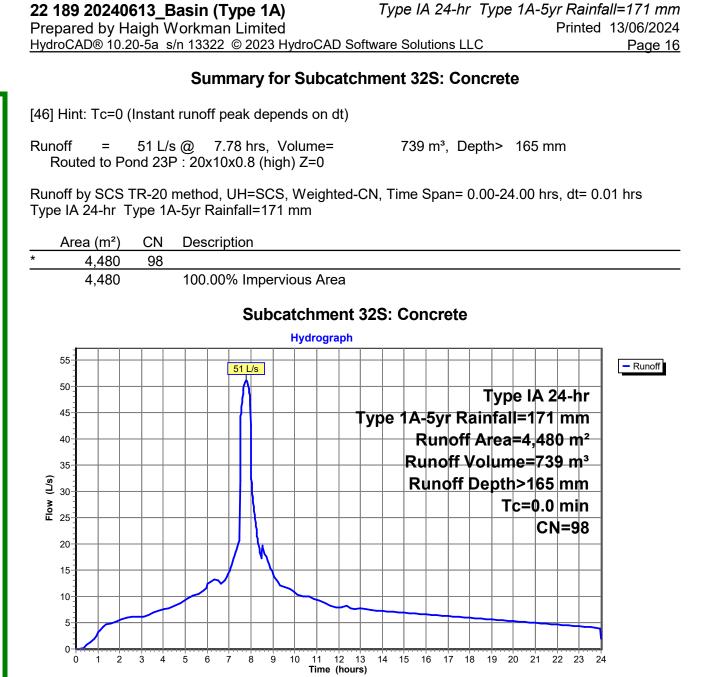
Link 30L: Pre-development

Summary for Link 31L: Mitigated

Inflow Area = $9,877 \text{ m}^2,100.00\%$ Impervious, Inflow Depth >121 mm for Type 1A-2yr eventInflow =49 L/s @8.20 hrs, Volume= $1,196 \text{ m}^3$ Primary =49 L/s @8.21 hrs, Volume= $1,196 \text{ m}^3$, Atten= 0%, Lag= 0.6 min


Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

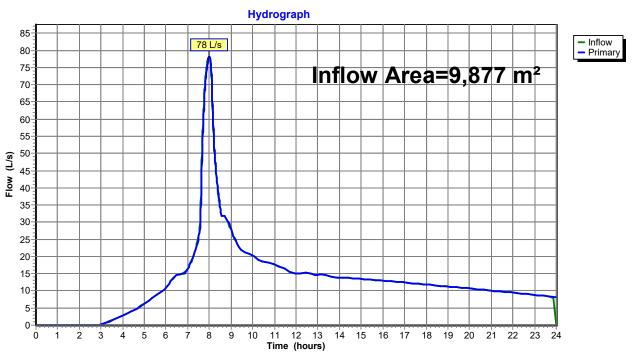



Link 31L: Mitigated

22 189 20240613_Basin (Type Prepared by Haigh Workman Lin	,	1A-5yr Rainfall=171 mm Printed 13/06/2024
	023 HydroCAD Software Solutions LLC	Printed 15/00/2024 Page 13
Runoff by S	n=0.00-24.00 hrs, dt=0.01 hrs, 2401 points SCS TR-20 method, UH=SCS, Weighted-C n-Route method - Pond routing by Sim-Ro	N
Subcatchment 24S: Roofs	Runoff Area=5,397 m² 100.00% Impervio Tc=10.0 min CN=	us Runoff Depth>164 mm 98 Runoff=61 L/s 888 m³
Subcatchment 30S: Predevelopme		us Runoff Depth>113 mm 0 Runoff=78 L/s 1,112 m³
Subcatchment 32S: Concrete	Runoff Area=4,480 m² 100.00% Impervio Tc=0.0 min CN=	us Runoff Depth>165 mm 98 Runoff=51 L/s 739 m³
Pond 23P: 20x10x0.8 (high) Z=0	Peak Elev=0.77 m Storage=154 m ²	³ Inflow=110 L/s 1,626 m ³ Outflow=78 L/s 1,607 m ³
Link 30L: Pre-development		Inflow=78 L/s 1,111 m³ Primary=78 L/s 1,111 m³
Link 31L: Mitigated		Inflow=78 L/s 1,606 m³ Primary=78 L/s 1,606 m³

Total Runoff Area = 19,754 m ²	Runoff Volume = 2,738 m ³	Average Runoff Depth = 139 mm
	50.00% Pervious = 9,877 m ²	² 50.00% Impervious = 9,877 m ²

Summary for Pond 23P: 20x10x0.8 (high) Z=0

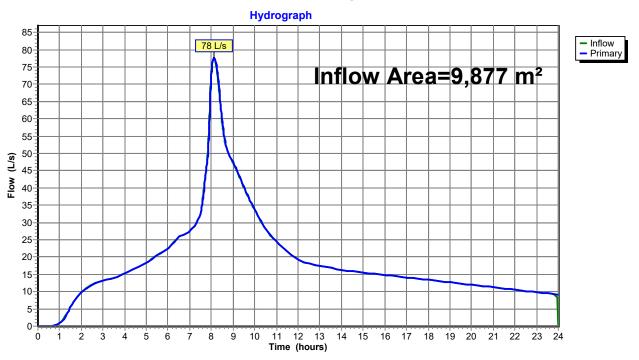

Inflow A Inflow Outflow Primary Rout	= 110 L = 78 L	9,877 m²,100.00% Impervious, Inflow Depth > 165 mm for Type 1A-5yr s @ 7.88 hrs, Volume= 1,626 m³ s @ 8.13 hrs, Volume= 1,607 m³, Atten= 29%, Lag= 15.0 min s @ 8.13 hrs, Volume= 1,607 m³	event						
		method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs 8.13 hrs Surf.Area= 200 m² Storage= 154 m³							
		ne= 32.1 min calculated for 1,606 m³ (99% of inflow) ne= 22.6 min(670.4 - 647.8)							
Volume	Invert	Avail.Storage Storage Description							
#1	0.00 m	160 m ³ 20.00 mW x 10.00 mL x 0.80 mH Prismatoid							
Device	Routing	Invert Outlet Devices							
#1	Primary	0.00 m 175 mm Vert. Orifice/Grate 2yr C= 0.650							
		Limited to weir flow at low heads							
#2	Primary	0.59 m 170 mm Vert. Orifice/Grate C= 0.650							
	,	Limited to weir flow at low heads							
-1=Or	Primary OutFlow Max=78 L/s @ 8.13 hrs HW=0.77 m TW=0.00 m (Dynamic Tailwater) 1=Orifice/Grate 2yr (Orifice Controls 57 L/s @ 2.38 m/s) 2=Orifice/Grate (Orifice Controls 20 L/s @ 0.90 m/s)								
Pond 23P: 20x10x0.8 (high) Z=0									
	1	Hydrograph							
120 115			N						
110									
105									

Inflow Area=9,877 m⁴ 100-95 Peak Elev=0.77 m 90-85-78 _/s Storage=154 m³ 80-75-70-(s/J) 65 Flow 60-55-50-45-40 35-30-25 20-15-10 5 0-7 11 12 13 Time (hours) 2 3 4 5 6 8 Ò 1 9 10 14 15 16 17 18 19 20 21 22 23 24

Summary for Link 30L: Pre-development

Inflow Are	a =	9,877	m ² , 0.00% Impervious,	Inflow Depth >	113 mm	for Type 1A-5yr event
Inflow	=	78 L/s @	7.99 hrs, Volume=	1,111 m³		
Primary	=	78 L/s @	8.00 hrs, Volume=	1,111 m³, <i>I</i>	Atten= 0%,	Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



Link 30L: Pre-development

Summary for Link 31L: Mitigated

Inflow Are	a =	9,877	m ² ,100.00 ⁶	% Impervious,	Inflow Depth >	163 mm	for Type 1A-5yr event
Inflow	=	78 L/s @	8.13 hrs,	Volume=	1,606 m³		
Primary	=	78 L/s @	8.14 hrs,	Volume=	1,606 m³, A	Atten= 0%,	Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link 31L: Mitigated

SANITARY DRAINAGE DESIGN

SITE:- BIDFOOD WIPAPA

MAIN OFFICE

Node	UPSTREAM		Pipe 🔶	GRADE	DIST	fall	DOWNSTREAM		cover	
ID	G.L.	I.L.	(mm)	(1:x)	(m)	(mm)	G.L.	I.L.	(mm)	
GT	78.72	77.60	STARTING POINT						1,010	
			100	60	3.6	60				
TV intersection							79.20	77.54	1,550	
Main TV	79.20	78.70							390	
			100	60	0.8	13				
TV intersection						(Drop-In)	79.20	78.69	403	
TV intersection	79.20	77.54							1,550	
			100	60	0.4	6				
Main WC1 Intersection							79.20	77.53	1,556	
Male WC1	79.20	78.70							390	
			100	60	1.3	21				
Main WC1 Intersection						(Drop-In)	79.20	78.68	411	
Main WC1 Intersection	79.20	77.53							1,556	
			100	60	1.7	28				
main line intersection 1							79.20	77.51	1,585	
Urinal	79.20	77.54							1,550	
			100	60	1.0	17				
Male FWG intersection	70.00						79.20	77.52	1,567	
Male WHB	79.20	78.74							390	
			65	40	3.4	85				
FWG							79.20	78.65	475	
FWG	79.20	78.55							540	
			100	60	1.3	22				
Male FWG intersection	70.00	77.50				(Drop-In)	79.20	78.53	562	
Male FWG intersection	79.20	77.52	100			10			1,567	
	_		100	60	0.7	12	70.00	77 54	4 570	
main line intersection 1	70.00	77 54					79.20	77.51	1,578	
main line intersection 1	79.20	77.51	100						1,578	
	_		100	60	1.6	27	70.00	77.40	4 005	
main line intersection 2	70.00	70.50	-				79.20	77.49	1,605	
Cupbaord sink	79.20	78.59	05	10		115			540	
			65	40	4.6	115	70.00	70.47	055	
main line intersection 2	70.00	77.40				(Drop-In)	79.20	78.47	655	
main line intersection 2	79.20	77.49	100	<u></u>	10	47			1,605	
			100	60	1.0	17	70.00	77 47	4 000	
male WC2 intersection	70.00	70.70					79.20	77.47	1,622	
Male WC2	79.20	78.70	100	<u></u>	0.0	20			390	
			100	60	2.3	38	70.00	70.00	400	
male WC2 intersection	70.00	77 47	_			(Drop-In)	79.20	78.66	428	
male WC2 intersection	79.20	77.47	100	60	0.9	15			1,622	
			100	00	0.9	15	79.20	77.45	1.626	
Female WHB intersection	79.20	78.74					79.20	11.40	1,636 390	
ACC WHB	79.20	10.14	65	40	1.8	45			390	
			05	40	1.0	40	70.20	79.60	125	
ACC FWG ACC FWG	79.20	78.59	+				79.20	78.69	435 500	
ACCEWG	19.20	10.09	100	60	1.6	27			500	
			100	00	1.0	21	79.20	78.56	527	
ACC WC INTERSECTION	79.20	78.57	+				19.20	10.00	527	
ACC WC	79.20	10.01	100	60	0.4	7			520	
			100	00	0.4	1	79.20	78.56	527	
ACC WC INTERSECTION	79.20	78.56					19.20	10.00	527	
ACC WC INTERSECTION	19.20	10.00	100	60	2.4	40			921	
Female FWO interes "			100	00	2.4	40	70.00	70 50	F67	
Female FWG intersection	70.00	70 74					79.20	78.52	567	
Female WHB	79.20	78.74	65	40	0.0	20			390	
			65	40	0.8	20	70.00	70 70	440	
Female FWG							79.20	78.72	410	

Female FWG	79.20	78.62							470
			100	60	0.5	8			
Female FWG intersection							79.20	78.61	478
Female FWG intersection	79.20	78.52							567
			100	60	1.8	30			
Female WHB intersection						(Drop-In)	79.20	78.49	597
Female WHB intersection	79.20	77.45							1,636
			100	60	0.5	8			
Femail WC 1 intersection							79.20	77.45	1,645
Female WC1	79.20	78.74							390
			65	40	2.2	55			
Femail WC 1 intersection						(Drop-In)	79.20	78.68	445
Femail WC 1 intersection	79.20	77.45							1,645
			100	60	1.2	20			
Femail WC 2 intersection							79.20	77.43	1,664
Female WC2	79.20	78.74							390
			65	40	2.0	50			
Femail WC 2 intersection						(Drop-In)	79.20	78.69	440
Femail WC 2 intersection	79.20	77.43							1,664
			100	60	12.5	208			
ORG intersection							78.92	77.22	1,593
ORG	78.92	78.42							390
			100	60	2.1	35			
ORG intersection						(Drop-In)	78.92	78.39	425
ORG intersection	78.92	77.22							1,593
			100	60	7.0	117			
SSMH1							78.60	77.10	1,389

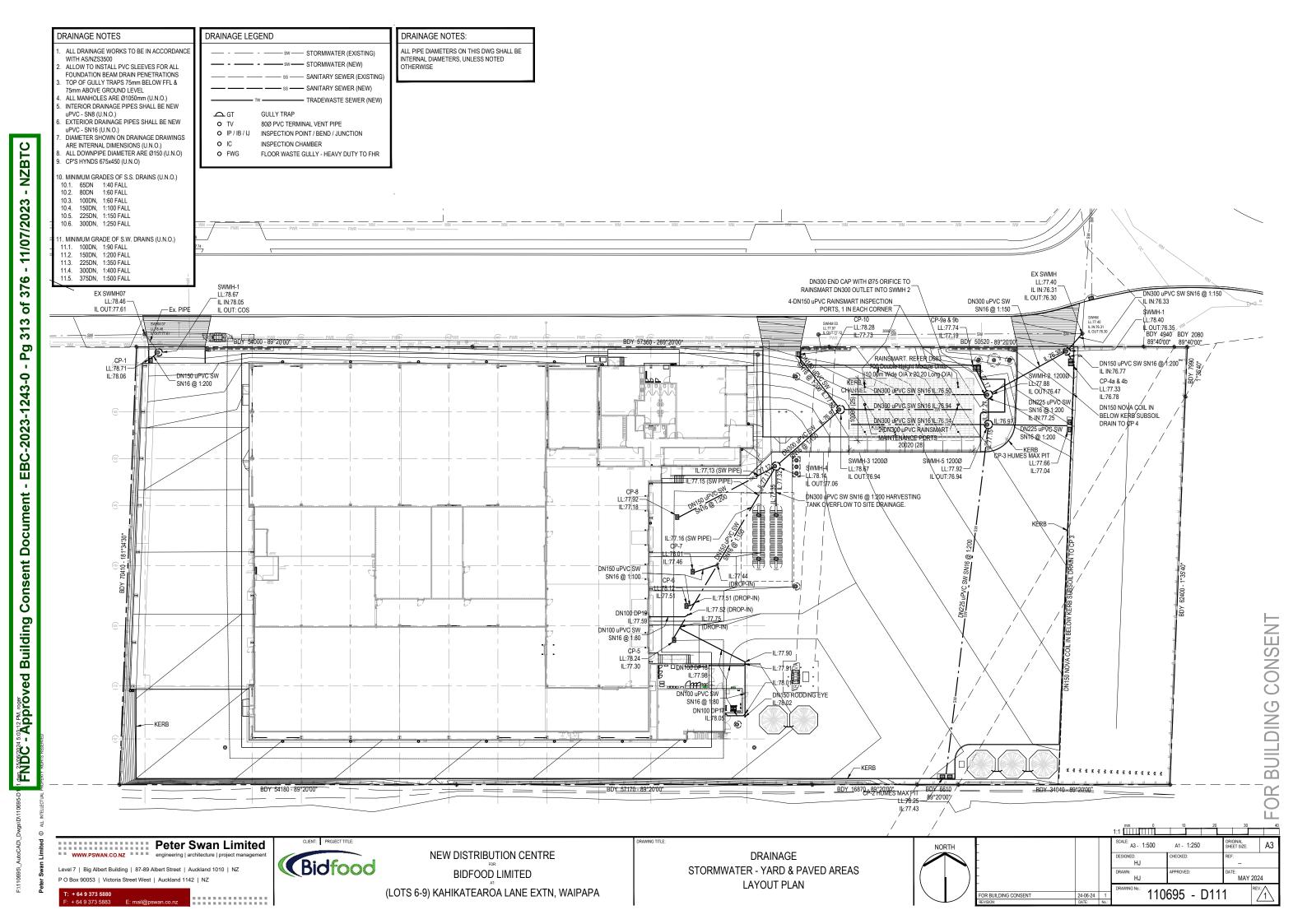
SSMH-1 TO SSMH-2

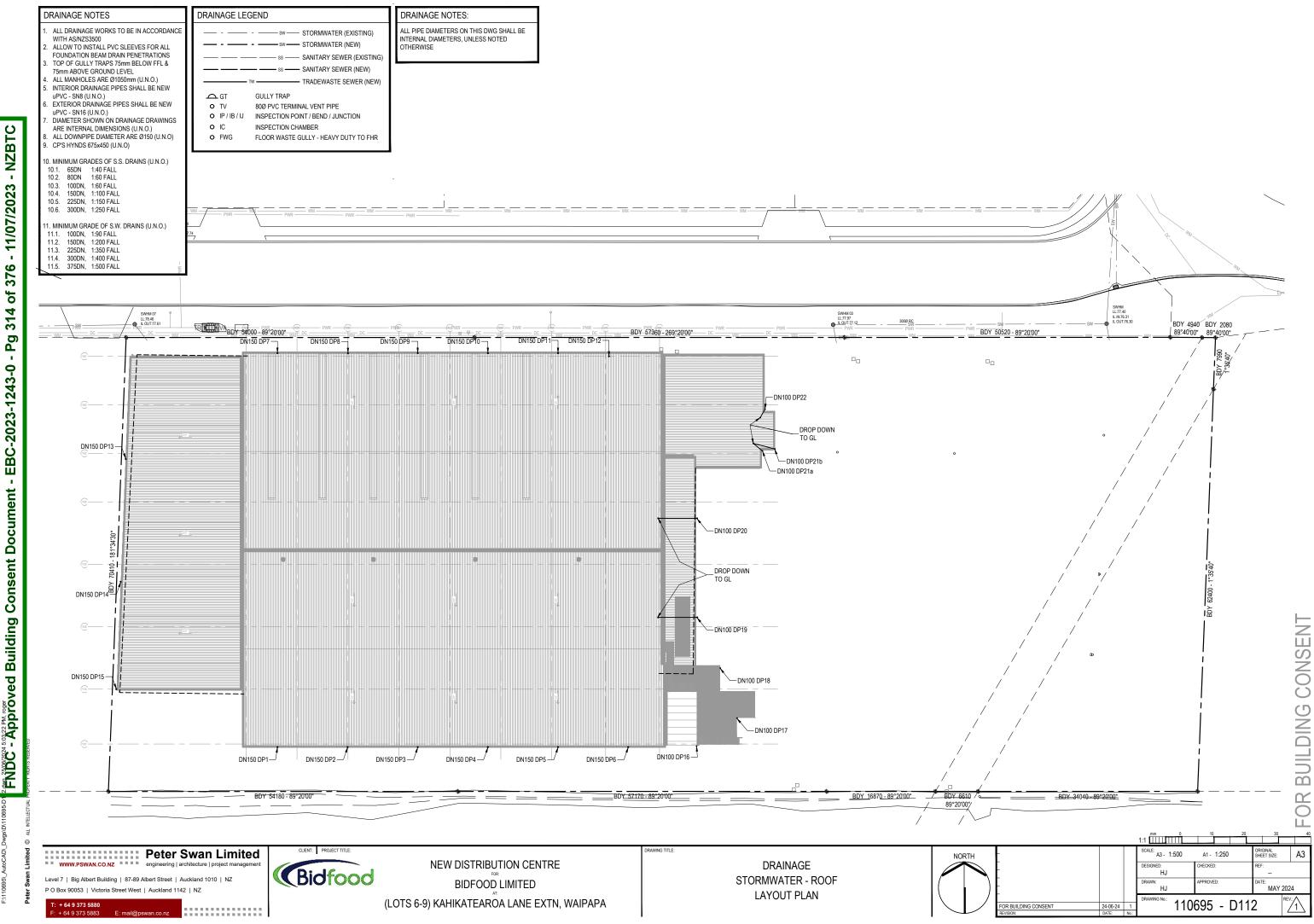
SSMH1	78.60	76.47							1,970
			150	100	29.0	290			
Wastewater Treatment Plant							77.69	76.18	1,350

TRADEWASTE DRAINAGE DESIGN

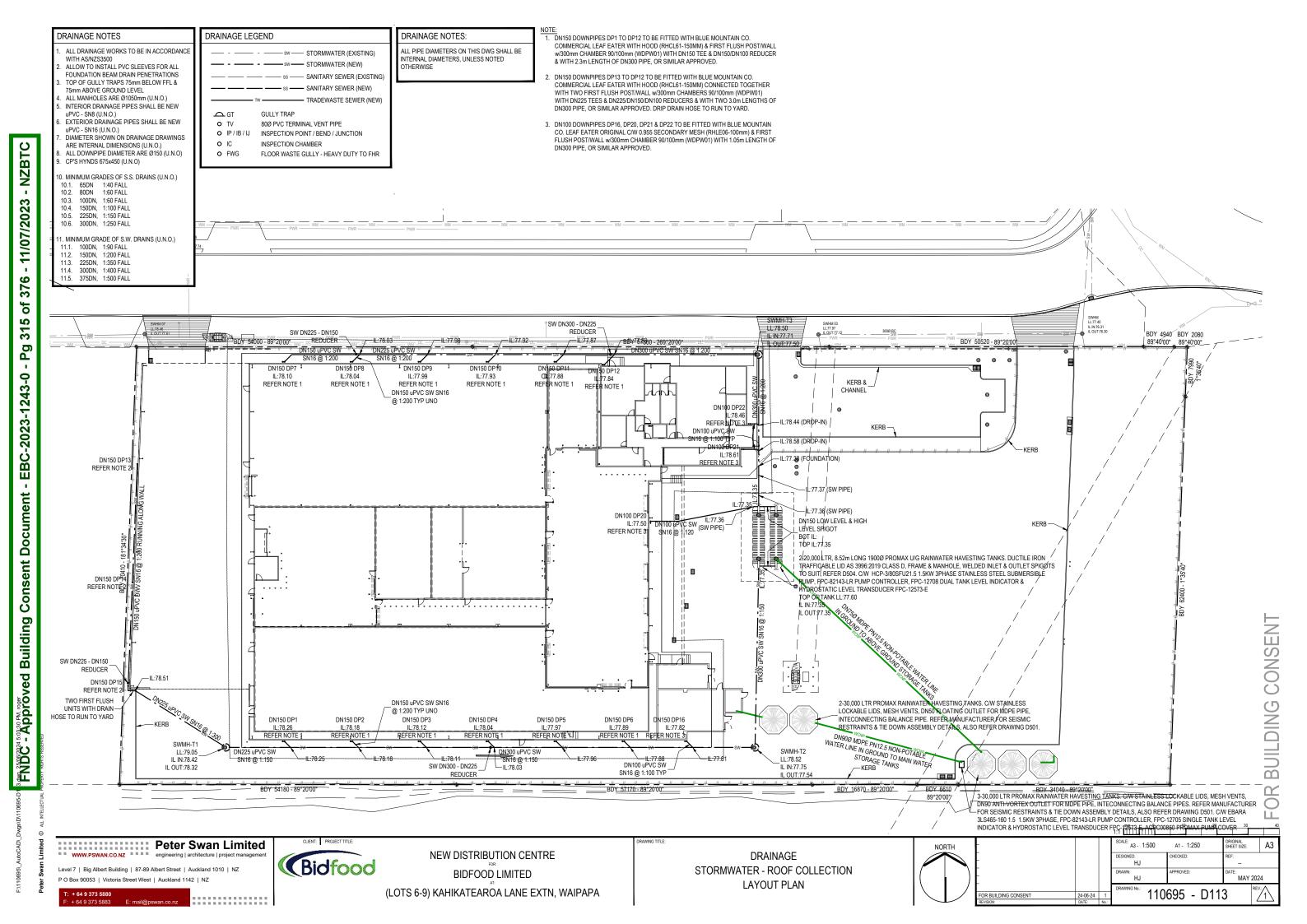
SITE:- BIDFOOD WIPAPA

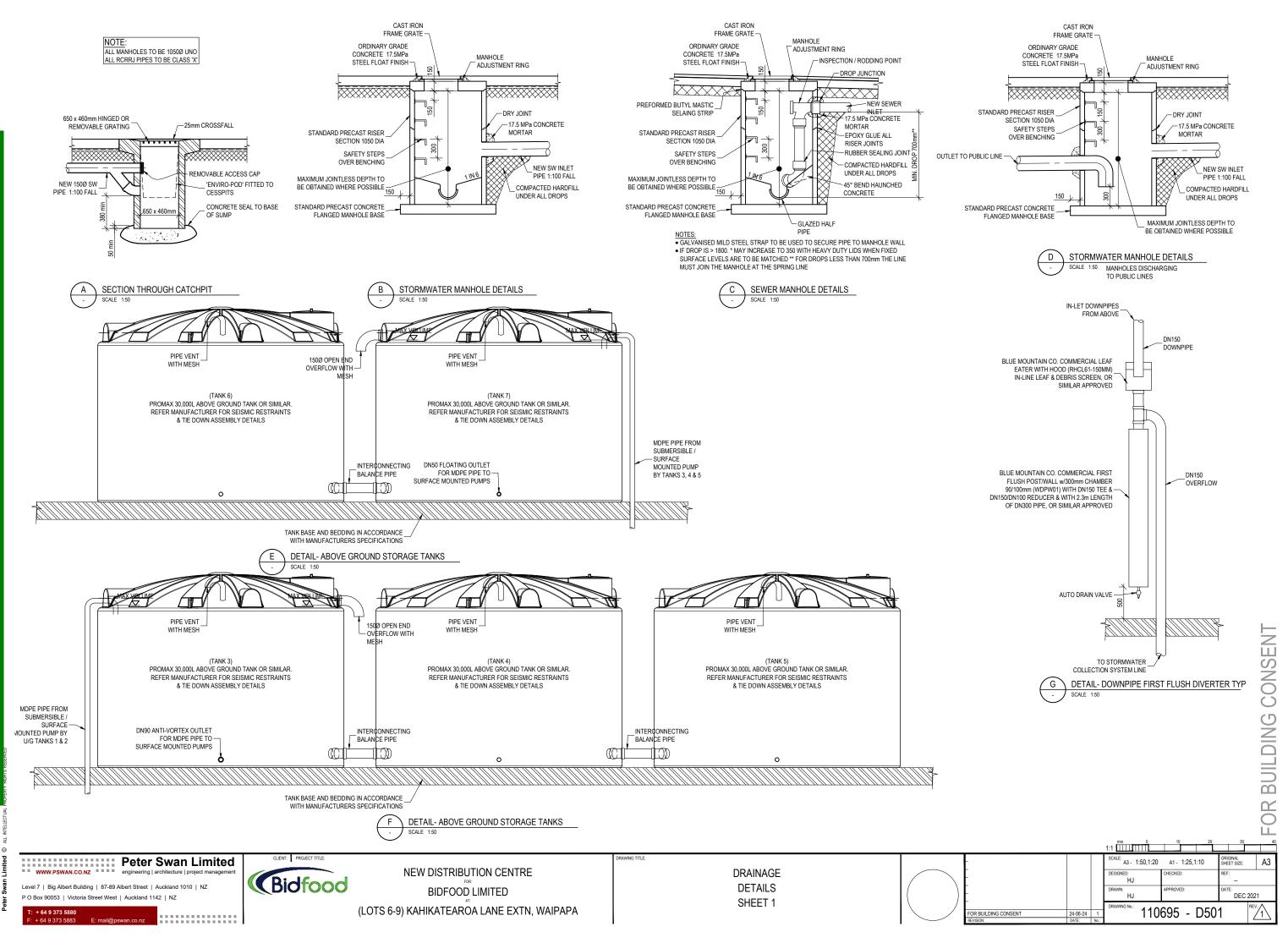
Produce area

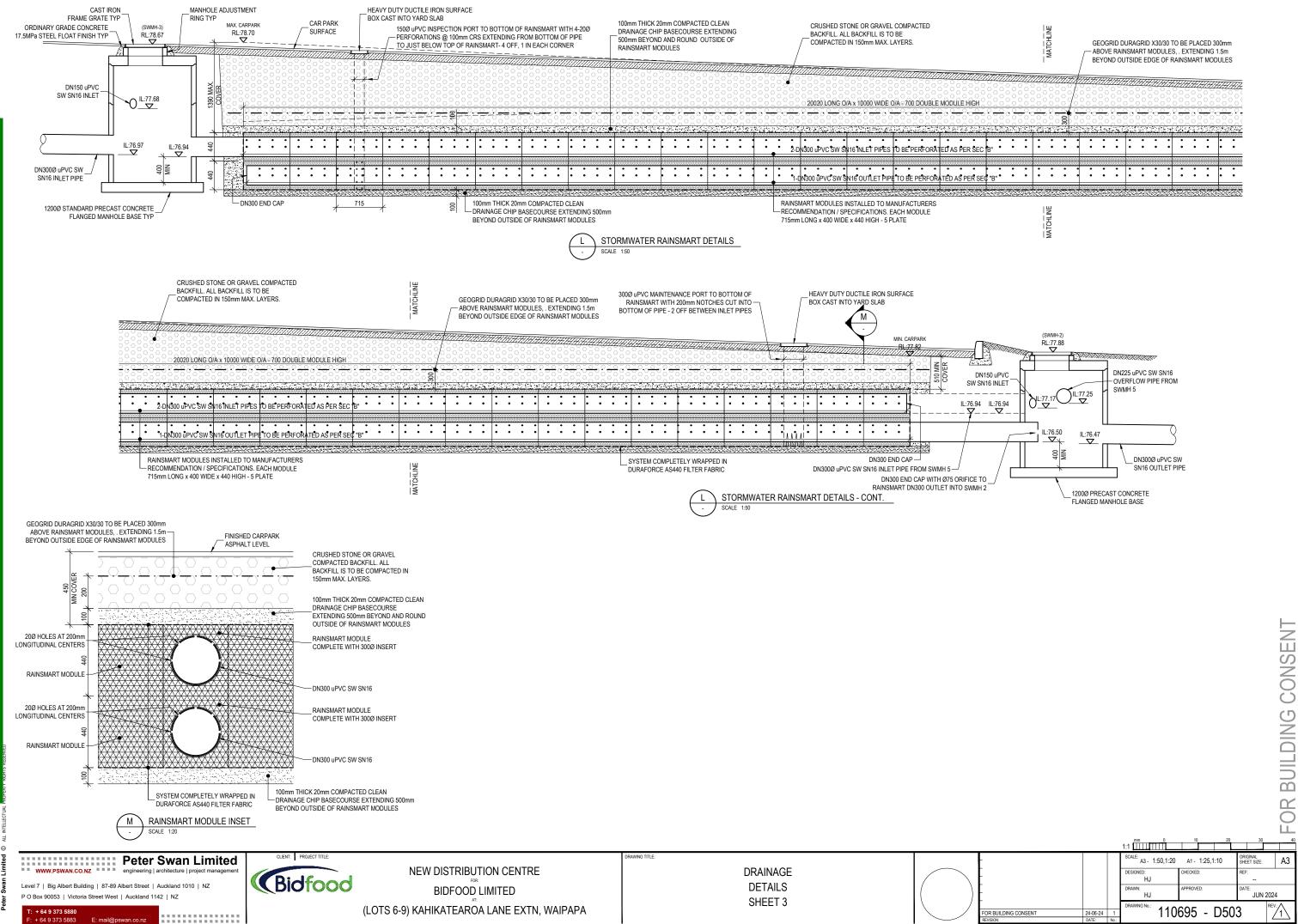

Node	UPSTREAM		Pipe ø	GRADE	DIST	fall	DOWNS	STREAM	cover
ID	G.L.	I.L.	(mm)	(1:x)	(m)	(mm)	G.L.	I.L.	(mm)
ORG	79.20	77.75	STARTING POINT	()				•	1,340
			100	100	0.5	5			,
TV intersection						-	79.20	77.75	1,345
Main TV	79.20	77.75							1.340
			100	100	0.5	5			
TV intersection						-	79.20	77.75	1,345
TV intersection	79.20	77.75							1.345
			100	100	19.5	195			.,
intersection Produce sink							79.20	77.55	1,540
Produce sink stack	79.20	78.70							390
			100	100	2.5	25			
intersection Produce sink						(Drop-in)	79.20	78.68	415
intersection Produce sink	79.20	77.55				(,			1,540
			100	100	3.0	30			.,
DN150-DN100 Reducer							79.20	77.52	1,570
DN150-DN100 Reducer	79.20	77.52							1,520
			150	100	0.5	5			.,
intersection Chiller 1 Condesate						-	79.20	77.52	1,525
Chiller 1 Condensate	79.20	78.49							600
			100	100	11.0	110			
intersection Chiller 1 Condesate							79.20	78.38	710
intersection Chiller 1 Condesate	79.20	77.52							1.525
			150	100	17.3	173			.,010
intersection Chiller2 condensate							79.20	77.34	1,697
chiller 2 Condensate	79.20	78.49							600
			100	100	11.4	114			
intersection Chiller2 condensate							79.20	78.38	714
intersection Chiller2 condensate	79.20	77.34							1.697
			150	100	23.5	235			.,
ELA AHU drain intersection							78.10	77.11	832
ELA AHU drain	78.10	77.15							840
			100	100	3.8	38			
ELA AHU drain intersection							78.10	77.11	877
ELA AHU drain intersection	78.10	77.11							832
			150	100	16.2	162			
Plantroom Intersection							78.12	76.95	1,014
Plantroom Intersection	78.12	76.95							1.014
			150	100	6.8	68			
TWMH-1							78.20	76.88	1,162
TWMH-1	78.20	76.85							1,192
			150	100	17.3	173			.,
Hynds Grease Trap							78.12	76.67	1,286
Hynds Grease Trap	78.21	76.62	1						1,425
,			150	100	12.5	125			.,
SSMH-1	1					.20	78.60	76.50	1,940
			-I				10.00		1,010


Plantroom

Node	UPSTREAM		Pipe ø	GRADE	DIST	fall	DOWNSTREAM		cover
ID	G.L.	I.L.	(mm)	(1:x)	(m)	(mm)	G.L.	I.L.	(mm)
Plantroom GT	78.60	78.10	STARTING POINT						390
			100	60	11.6	193			
GT Intersection							78.53	77.91	513
RE	78.52	77.91							500
			100	60	0.3	5			
GT Intersection							78.53	77.91	515
GT Intersection	78.53	77.91							515
			100	60	3.0	50			
TWMH-1 intersection							78.57	77.86	605
plantroom WHB	78.80	78.34							390
			65	40	5.4	135			
Plantrrom FWG							78.80	78.20	525
Plantrrom FWG	78.80	78.11							580
			100	60	8.2	137			107
TWMH-1	70.57	70.00					78.57	77.97	487
TWMH-1	78.57	78.20	100	~~~	4.0	40			260
			100	60	1.0	16	70.57	70.40	070
TWMH-1 intersection	78.57	77.00					78.57	78.18	276
TWMH-1 intersection	/8.5/	77.86	100	60	26	44			605
Dunan na ana interna atian			100	60	2.6	44	79.05	77.81	1,129
Pump room intersection Pump Room Tundish	78.80	78.40	-				79.05	11.01	290
	70.00	70.40	100	60	3.6	60			290
Pump room intersection			100	00	5.0	00	79.05	78.34	600
Pump room intersection	79.05	77.81					13.00	10.04	1,129
Fullip room intersection	13.00	11.01	100	60	6.5	108			1,123
mcc room tundish intersection			100	00	0.0	100	78.79	77.70	976
MCC ROOM GT	79.05	78.65					10.10		290
			100	60	6.6	110			
mcc room tundish intersection				••			78.79	78.54	140
mcc room tundish intersection	78.79	77.70							976
			100	60	3.3	55			
TWMH-2				••			78.48	77.65	721


APPENDIX B


Stormwater Plans



ž

110695_AutoCAD_Dwgs\D\1105

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd

Haigh Workman reference 22 189

May 2024

Phone: +64 9 407 8327 • Fax: +64 9 407 8378 • info@haighworkman.co.nz • www.haighworkman.co.nz

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd

Revision History

Revision Nº	Issued By	Description	Date
A	John Papesch	First Issue	31 May 2024

Prepared by

John 🖌 apesch

Senior Civil Engineer

CPEng CMEngNZ

i

Reviewed By

Wayne Thorburn

Senior Geotechnical Engineer

CPEng CMEngNZ

TABLE OF CONTENTS

	Revisi	on History	i
Exe	ecutive	e Summary	1
1	Intro	duction	3
	1.1	Project Brief Scope	3
	1.2	Site Description	3
	1.3	Proposed Development	4
	1.4	Limitations	4
2	Geol	ogy	5
	2.1	Published Geology	5
3	Flood	d Hazard	7
	3.1	Published Flood Data	7
	3.1	Flood Hazard Assessment	7
4	Grou	Ind Investigations	8
	4.1	Geotechnical Investigations	8
	4.2	Wastewater Investigations	8
5	On-S	ite Wastewater System1	L1
	5.1	Design Population and Flow	11
	5.2	Condensate waste	11
	5.3	Site and Soil Evaluation	11
	5.4	Disposal Field	11
	5.5	Secondary Treatment System	12
6	Sumi	mary of Regulatory Requirements1	13
	6.1	Regional Plan	13
	6.2	District Plan	14
Ар	pendi>	x A – Drawings1	16
Ар	pendi	x B – Exploratory Hole Records1	L7
Ар	pendix	x C – FNDC Wastewater Checklist1	18
Ap	pendi	x D – Producer Statement - Design	25
	• • • • • •		-

TABLES

Table 1 - Geological Legend	5
Table 4.1 – Summary of Ground Conditions	8
Table 4.2 – Summary of Excavation Logs	9
Table 4.3 – Summary of Groundwater Occurrence	9
Table 4.4 – 1547:2012 Soil categories and recommended design loading rates	10
FIGURES	
Figure 1 - Site Location	4
Figure 2 – Published geological maps	6

Executive Summary

It is proposed to construct a new distribution centre for Bidfoods Limited at Lots 6-8 Kahikatearoa Lane, Waipapa. The proposed development site spans three properties; Lots 6-8 DP 567982 which have a combined site area of 11,881 m2. Up until recently, the site was wholly in pasture. Topsoil has been stripped from lots 6 and 7 and aggregate placed on those sites for preloading the building platform. Lot 8 is still in pasture, and it is within lot 8 where the proposed wastewater system is to be sited.

This report presents a design for an on-site wastewater system to service the proposed development as no reticulated town sewerage system is available.

Wastewater Flows

Wastewater from the proposed new distribution centre is calculated to be ;

- 50 staff x 40 L/person 2,000 litres/day
 Condensate from the chillers: 1,000 litres/day
- Condensate from the chillers:1,000 litres/dayCombined total:3,000 litres/day

The volume of condensate was provided from Peter Swan Ltd at 870 litres/day, which we have rounded up to 1,000 litres. There are no chemicals in the air condition or defrost condensate discharges and no chemicals are to be used to flush condensate lines which could otherwise damage the biology in an on-site wastewater treatment plant.

Staff loading from a rural factory can vary from 30-50 litres/person/day, depending on various factors such as the source of water supply. Readings from a nearby factory have yielded average daily loading rates of 34 L/person and peaks of 44 L/person. On this basis we consider a mid-range rate of 40 L/person is suitable.

Treatment Plant

A treatment plant which is sized to cater for 3,000 litre/day is proposed here. The treatment plant is to meet the quality output of NZS 1546:3:2003, capable of producing effluent with Biochemical Oxygen Demand (BOD_5) and Total Suspended Solids (TSS) concentrations not exceeding 20 g/m³ and 30 g/m³, respectively. Grease traps (4,500 litre minimum) are to be included with the proposed building development to intercept oil and grease prior to discharge to the treatment plant.

The treatment plant brand and specifications are to be included with the building consent application. The treatment plant is to include electronic metering to provide accurate data for monitoring records.

Disposal Field

The land disposal area is on the eastern side of the development, in an area of green-field, undisturbed ground. This position is gently elevated above the road, with an open and sunny aspect in an area designated for landscape planting.

Being a commercial site, we have investigated the land disposal area by conducting 4x test pits with constant head soakage tests to carefully measure and record the soil properties for evaluation of soil structure and soil category. The soil has been evaluated as AS/NZS 1547 category 6 clay due to the elevated ground water and moisture conditions which is reflected in this soakage test results. Detailed investigations from field works are presented in Appendix B.

Due to the poorly drained soils and elevated ground water table, it is proposed to construct a raised topsoil mound with drip irrigation, in general accordance with AS/NZS1547 specifications. A densely planted raised topsoil mount with a sunny aspect is expected to be able to cope with a design irrigation rate of 3 mm/day which results in a 1,000 m2 land application area. This is achieved with a 15 m wide mound x 67 m long, on the eastern site of the development.

The dripper lines are to be placed at least 1.5 m from the Site boundaries and 1.5 m from the kerb line as per the typical details enclosed.

A reserve (no-build) area of 300 m2 is also required and has been set aside within the proposed yard. It is unlikely that the reserve area is ever to be used here, instead if greater wastewater volumes are to be generated on site the nature of the disposal field would need to be redesigned as a Wisconsen mound or similar.

Resource Consent Required

The wastewater is less than 5 m from an 'identified stormwater flow path', being the adjacent kerbs of the car park and the open drain on southern neighbours property. The daily loading rate is also in excess of 2,000 litres/day. Resource consent from NRC is therefore required for this activity.

Design Summary

Criteria	Comments		
Occupancy	50 workers		
	Black water from staff kitchen and toilet facilities		
Wastewater source	Condensate from the chillers		
Wastewater generation	3,000 L/day		
Treatment system	Secondary treatment plant		
Location of effluent disposal	Eastern boundary of lot 8		
	Buried drip irrigation to a raised topsoil mound.		
Effluent disposal system	Cover with bark mulch and densely plant		
	15 lines x 67 m long with flush valves at the end of		
Dripperline design	each line. Dripper field to be split into 3 zones, ie 5		
	lines per zone with a 3-way sequencing valve.		
Irrigation pump	Davey D42A/B or equivalent		
Soil type	AS/NZS1547 category 6		
Application rate	3 mm/day		
Extent of land application	1.000 m^2		
area	1,000 m ²		
Slope of land application area	5°		

1 Introduction

1.1 Project Brief Scope

Haigh Workman Ltd. (Haigh Workman) has been commissioned by Peter Swan Ltd (the Client) to undertake a on-site wastewater design for a proposed distribution centre at Lots 6-8 Kahikatearoa Lane Extension, Waipapa. This report presents the information gathered during the site investigation, interpretation of data obtained and on-site wastewater recommendations relevant to the site.

The scope of this report encompasses the wastewater design in the context of the proposed development as defined in the drawings provided by Peter Swan Ltd. This appraisal has been designed to assess the subsoil conditions for wastewater design and identify constraints for the proposed development.

This report provides the following:

- A summary of the published geology with reference to the geotechnical investigations undertaken.
- Analysis of the data obtained from site investigations and a geological ground model.
- Wastewater design recommendations.

1.2 Site Description

Site Address:	15-19 Kahikatearoa Lane, Waipapa.
Legal Description:	Lot 6-8 DP 567920
Title:	1019564, 1019565, 1019566
Owner:	Bidfood Ltd
Area:	3,799 m² , 4,035 m², 4,047 m²

Lots 6-8 DP 567982 which have a combined site area of 11,881 m2. Up until recently, the site was wholly in pasture. Topsoil has been stripped from lots 6 and 7 and aggregate placed on those sites for preloading the building platform. Lot 8 is still in pasture, and it is within lot 8 where the proposed wastewater system is to be sited.

The site is bound by Kahikatearoa Lane to the north, greenfield land (zoned industrial) to the west, and industrial use sites to the south and east. Topographically the property generally dips towards Kahikatearoa Lane to the north and east over an elevation difference of approximately 1 m. The gradient of the land is in the order of 1-2 degrees. Mature trees were noted along the eastern boundary. A 33 kV overhead line transects lot 8 in a north-easterly direction, with a pylon located near the north-eastern boundary corner.

Kahikatearoa Lane is a new road recently vested with FNDC. The road level has been set specifically low so that it acts as an overland flow path for flood waters, to avoid flood water spilling through the subject site. The road does include a vested water main and hydrants for fire fighting, however the water reticulation network is not available for site supply.

1.3 Proposed Development

We understand that Bidfood Ltd intends to develop the site with the construction of a New Distribution Centre as per drawings provided by Peter Swan Ltd. The proposed building works span across lots 6 and 7 whilst lot 8 contains the dispatch yard and proposed wastewater field, sited along the eastern boundary.

Should the wastewater field be relocated outside of the investigated area, further investigation and/or amendments to the recommendations made in this report may be required.

Figure 1 - Site Location

1.4 Limitations

This report has been prepared for the use of Peter Swan Ltd with respect to the particular brief outlined to us. This report is to be used by our Client and their Consultants and may be relied upon by Northland Regional Council and Far North District Council when considering Resource/Building Consent aspects for the proposed development. The information and opinions contained within this report shall not be used in any other context for any other purpose without prior review and agreement with Haigh Workman Ltd.

2 Geology

2.1 Published Geology

Sources of Information:

- Institute of Geological & Nuclear Sciences 1:250,000 Geological Map 2, 2009: "Geology of the Whangarei area"
- NZMS 290 Sheet P04/05, 1: 100,000 scale, 1982: "Rock types map of the Whangaroa Kaikohe area"
- NZMS 290 Sheet P04/05, 1: 100,000 scale, 1980: "Soil map of the Whangaroa Kaikohe area"

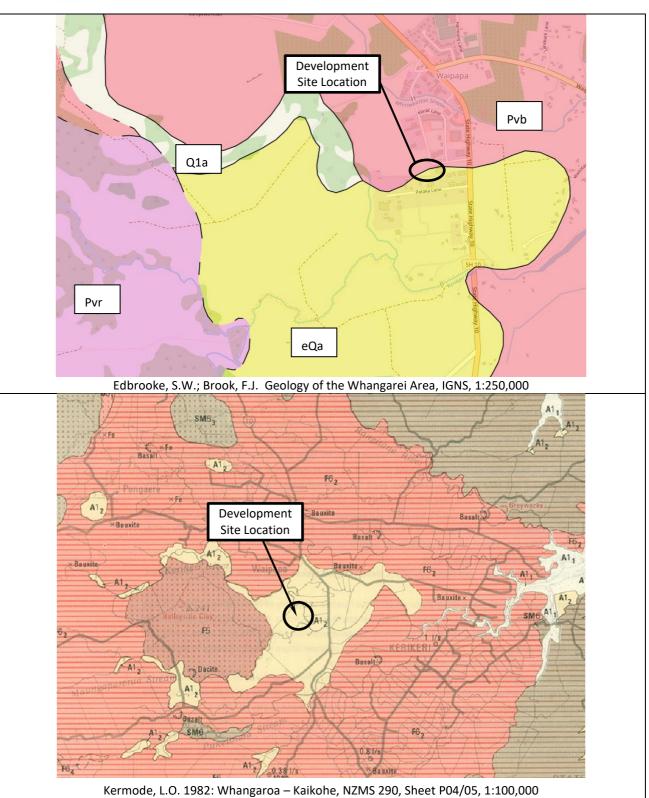
The site is within the bounds of the GNS Geological Map 2 "Geology of the Whangarei area", 1:250,000 scale¹. The published geology shows the site to be located near a geological boundary of Kerikeri Volcanic Group and Tauranga Group alluvial soils. The Waipapa area, although mapped as Kerikeri Volcanic Group, typically is overlain by recent alluvial soils exhibiting variable strength. Further reference to the published New Zealand land inventory maps (Whangaroa-Kaikohe 1980) also indicates the site is underlain by alluvium (A1₂), forming riverbed and flood plain deposits, in places forming a thin veneer (1-3m) over rugged surfaces of lava flows.

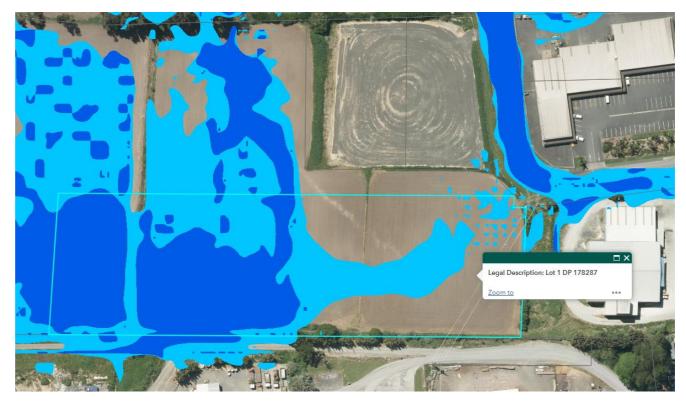
Table 1 - Geological Legend

Symbol	Unit Name	Description
Q1a / A1 ₂	Tauranga Group (Holocene)	Unconsolidated to poorly consolidated mud, sand, gravel, and peat deposits of alluvial, colluvial and lacustrine origins. Holocene river deposits.
eQa	Tauranga Group (Early to middle Pleistocene)	Partly consolidated mud, sand, gravel and peat or lignite of alluvial, colluvial, lacustrine, swamp and estuarine origins. Early Pleistocene – Middle Pleistocene estuary, river, and swamp deposits.
Pvb / F62	Kerikeri Volcanic Group (Late Miocene to early Pliocene)	Basalt lava, volcanic plugs, and minor tuff. Kerikeri Volcanic Group Late Miocene basalt of Kaikohe – Bay of Islands Volcanic Field.
Pvr / F5	Kerikeri Volcanic Group (Late Miocene to early Pliocene)	Alkaline and peralkaline rhyolite domes with some obsidian.

¹ Edbrooke, S.W; Brook, F.J. (compilers) 2009. Geology of the Whangarei area.

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd




Figure 2 – Published geological maps

3 Flood Hazard

3.1 Published Flood Data

Published flood data indicates flood water spilling from Kerikeri River catchment to the west, through the site and toward Kahikatearoa Lane. This flood model was published prior to the development of the subdivision, and does not reflect the alterations made to ground levels by way of subdivisional earthworks and roading.

3.1 Flood Hazard Assessment

Haigh Workman issued a flood hazard assessment for the site in a letter report dated 11 August 2023. In that report it identified NRC consent 43067 which provided for the diversion of floodwater within the subdivision development. That diversion of flood water was provided for in Haigh Workman report dated 28 September 2021 (ref 21 131). This design involved diverting flood water which was modelled to spill through the subject site, to instead be directed to spill down the new road to vest (Kahikatearoa Lane). On the basis of Haigh Workman prior flood hazard assessments, we consider the proposed disposal field is not prone to flooding.

4 Ground Investigations

4.1 Geotechnical Investigations

Haigh Workman has completed a geotechnical investigation for the site comprising 14 cone penetration tests, six hand augured boreholes and 19 scala penetrometer tests. The CPTs and hand augers were focussed on the proposed building development, with the scala penetrometer testing around the pavement areas. The CPT testing revealed refusal on the Kerikeri Volcanic Group typically in the upper 5 m, however some thicker alluvial deposits were encountered in lot 7, indicating a paleochannel through the site.

Ground water was on average encountered at 1 m depth (range 0.6 to 1.7 m). This results in the soil profile having a stiff crustal layer in the upper 1 m. Below grondwater, in a saturated condition, the soils are soft to firm.

4.2 Wastewater Investigations

Four test pits were dug on 27 May 2024 along the eastern boundary of the site with constant head soakage testing. The soils have been logged and categorised according to AS/NZS1547. Detailed descriptions of soils and groundwater observations made during intrusive investigation works are presented in Appendix B. A summary of ground conditions is included in Table 5.1.

Strata	Depth to Top of Strata (m bgl)	Details
Topsoil	0.00	Ground conditions include a surface covering of topsoil. Topsoil is expected to be typically 100-200 mm depth across the proposed wastewater field
Waipapa clays (YF)	0.15 m	Firm silty clays considered to be consistent with the YF horizon were identified within each exploratory location. The upper horizon was logged as a clay loam, transitioning at varying depths into a heavy clay.
		As the depth of the upper horizon was limited, and due to the shallow depth of ground water encountered, the drainage properties were poor with kSat values varying from 0.02-0.09 m/day
		Ground water was typically encountered at $0.7 - 1.0$ m depth over the proposed disposal field.
Basalt Rock	NE	A basalt shelf likely underlies the site, as identified in the Haigh Workman geotechnical report. The depth to the basalt rock was not investigated in this assessment.

NE - Not Encountered.

4.2.1 *Material Properties*

A summary of the material properties and soakage testing in accordance with AS/NZS1547 is included in Table 5.2.

Table 4.2 – Summary of Excavation Logs

Strata	Depth to Top of Strata (m bgl) (Thickness)	Texture	Structure	Constant Head Soakage Testing (k _{sat} in m/day)	
Waipapa Clays	0.10 m (0.5-0.8 m)	Clay loam	Moderate	TP1 – 0.02 TP2 – 0.07 TP3 – 0.09 TP4 – 0.06	
	0.6-0.9 m	Heavy clay	Moderate		

4.2.2 Groundwater

Groundwater was encountered in all test pits. It should be noted that the water levels are likely to fluctuate with the seasons/rainfall. Only light rainfall occurred in the days preceding the investigation, and soil moisture deficits are returning to normal following a summer drought. The groundwater table encountered is therefore anticipated to be indicative of a normal groundwater scenario.

Table 4.3 – Summary of Groundwater Occurrence

Exploratory Hole	Depth Encountered (m bgl)	Description	Stratum	
TP1-TP4	0.7-1.0	At depth expected based upon observation of soil types	Heavy clays	

4.2.3 Soil Category

Whilst a clay loam dominates the upper 0.5-0.8 m soil profile, the soil soakage testing indicates the site is poorly drained as a result of the heavy clays beneath and resultant high water table. In accordance with AS/NZS 1547:2012 the soils across the proposed disposal field are therefore classed as soil category 6 *medium to heavy clay* with moderate structure.

				Design irrigation/loading rate (DIR/DLR) (mm/day)									
Soil Category	Soil texture	Structure	Indicative permeability (K _{sat}) (m/d)	Trenches and beds (see Table L1)			ETA/ETS	Drip and	LPED	Mounds			
						Secondary treated	beds and trenches	spray irrigation	irrigation	(basal area)			
				Conservative rate	Maximum rate	effluent	(Table L1)	(Table M1)	(Table M1)	(Table N1)			
1	Gravels and sands	Structureless (massive)	> 3.0	(see Note 1 of Table L1 for DLR values)				5	(see Note 3 of Table M1)	32			
	Sandy	Weakly structured	> 3.0		(see note i of rable LT for DEn values)			(see Note 2 of Table M1)					
2	loams	massive	1.4 – 3.0	15	25	50	(see Note 4 of Table L1)	or rable wrij	4	24			
3	Loams	High/ moderate structured	1.5 – 3.0	15	25	50		4			4 (see Note 1	1 3.5	24
3	Loams	Weakly structured or massive	0.5 – 1.5	10	15	30		of Table M1)		16			
		High/ moderate structured	0.5 – 1.5	10	15	30	12	3.5		16			
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20		(see Note 1 of Table M1)	3	8			
		Massive	0.06 - 0.12	4	5	10	5	or rabie wity		(see Note to Table N1)			
		Strongly structured	0.12 - 0.5	5	8	12	8	3	0.5	8			
5	Light clays	Moderately structured	0.06 - 0.12		5		2.5 (see Note 4 of Table M1)						
		Weakly structured or massive	< 0.06			8	5	or rable wit)	of fable with				
		Strongly structured	0.06 - 0.5				(see Notes 2, 3, and 5		6	(see Note to Table N1)			
6	Medium to heavy clays	Moderately structured	< 0.06	(see No	otes 2 and 3 of Ta	able L1)	of Table L1)	2 (see Note 2	(see Note 3 of Table M1)				
		Weakly structured or massive	< 0.06				of Table M1)			×			

5 On-Site Wastewater System

5.1 Design Population and Flow

We understand there are to be 50 staff at the new distribution centre. Staff loading from a rural factory can vary from 30-50 litres/person/day, depending on various factors such as the source of water supply. The water main within Kahikatearoa Lane is not available for potable water supply at this time. Therefore, roof water supply is required.

TP58 recommends a design loading rate of 40 litres/person/day for day staff for standard facilities. Readings from a nearby factory have yielded average daily loading rates of 34 L/person and peaks of 44 L/person. On this basis we consider a mid-range rate of 40 L/person is suitable.

50 staff x 40 L/person2,000 litres/day

5.2 Condensate waste

The volume of condensate was provided from Peter Swan Ltd at 870 litres/day. There are no chemicals in the air condition or defrost condensate discharges and no chemicals are to be used to flush condensate lines which could otherwise damage the biology in an on-site wastewater treatment plant. For design we adopt the following:

• Condensate from the chillers: 1,000 litres/day

5.3 Site and Soil Evaluation

Whilst a clay loam dominates the upper 0.5-0.8 m soil profile, the soil soakage testing indicates the site is poorly drained as a result of the heavy clays beneath and resultant high ground water table. In accordance with AS/NZS 1547:2012 the soils across the proposed disposal field are therefore classed as soil category 6 *medium to heavy clay* with moderate structure. These soils are normally suitable for drip irrigation at a rate of 2 mm/day, or a Wisconsin mound at 5 mm/day (subject to conditions).

The effluent disposal field is fairly flat and raising the disposal field will have the benefit of increasing separation from the ground water table and achieving positive draining of surface water as the natural site gradients will be prone to ponding.

The formation of a car park adjacent will serve to intercept surface water, and with imposition of standard under kerb drainage, will aid in reducing potential for elevated ground water conditions during periods of extreme rainfall.

To address issues with poor drainage associated with elevated ground water conditions and poor surface water management, we recommend the disposal field is formed as a raised topsoil mound. The effluent disposal field has an open and sunny disposition and if densely planted will be able to maximise evapotranspiration update. For a densely planted raised topsoil mound, we consider a drip irrigation rate of 3 mm per day is suitable.

5.4 Disposal Field

The area requirement for the disposal field is as follows;

 $Area of drip irrigation required = \frac{Design \ Loading \ Rate}{Design \ Irrigation \ Rate}$

$$=\frac{3,000}{3}$$

= 1,000 m2

The dripper lines are to be placed at least 1.5 m from the Site boundaries and 1.5 m from the kerb line as per the typical details enclosed.

A reserve (no-build) area of 300 m2 is also required and has been set aside within the proposed yard. It is unlikely that the reserve area is ever to be used here, instead if greater wastewater volumes are to be generated on site the nature of the disposal field would need to be redesigned as a Wisconsen mound or similar.

5.5 Secondary Treatment System

A treatment plant which is sized to cater for 3,000 litre/day is proposed here. The treatment plant is to meet the quality output of NZS 1546:3:2003, capable of producing effluent with Biochemical Oxygen Demand (BOD₅) and Total Suspended Solids (TSS) concentrations not exceeding 20 g/m³ and 30 g/m³, respectively.

The treatment plant brand and specifications are to be included with the building consent application.

Grease traps (4,500 litre minimum) are to be included with the proposed building development to intercept oil and grease prior to discharge to the treatment plant.

The treatment plant is to include electronic metering to provide accurate data for monitoring records.

It would be prudent to note that when considering a wastewater treatment system, it should be designed to meet the quality output of NZS 1546:3:2003, capable of producing effluent with Biochemical Oxygen Demand (BOD₅) and Total Suspended Solids (TSS) concentrations not exceeding 20 g/m³ and 3 0g/m³, respectively.

6 Summary of Regulatory Requirements

6.1 Regional Plan

The discharge of sewage effluent on to land is controlled by the permitted activity rules C.6.1.3 of the Regional Plan for Northland. A summary of the requirements is included below:

	Criterion	Comment
1)	The on-site system is designed and constructed in accordance with the Australian/New Zealand Standard. On-site Domestic Wastewater Management (AS/NZS 1547:2012), and	We have designed in general accordance with this standard, except we have adopted a design irrigation rate of 3 mm/day which is higher than recommended for a cat 6 soil. This higher rate is respective of forming a raised topsoil mound, densely planted with a sunny disposition
2)	The volume of wastewater discharged does not exceed two cubic metres per day, and	Consent required at 3,000 litres / day proposed)
3)	The discharge is not via a spray irrigation system or deep soakage system, and	Complies (drip irrigation proposed)
4)	The slope of the disposal area is not greater than 25 degrees, and	Complies (Mound Slopes are 5° or less)
5)	 For wastewater that has received secondary treatment or tertiary treatment, it is discharged via: a) a trench or bed system in soil categories 3 to 5 that is designed in accordance with Appendix L of Australian/New Zealand Standard On-Site Domestic Wastewater Management (AS/NZS 1547:2012); or b) an irrigation line system that is dose loaded and covered by a minimum of 50 millimetres of topsoil, mulch, or bark, and 	Complies. The irrigation system will be dose limited. The dripperlines will be buried or covered in mulch.
6)	 for the discharge of wastewater <u>onto the surface of slopes greater</u> <u>than 10 degrees:</u> c) the wastewater, excluding greywater, has received at least secondary treatment, and d) the irrigation lines are firmly attached to the disposal area, and e) where there is an up-slope catchment that generates stormwater runoff, a diversion system is installed and maintained to divert surface water runoff from the up-slope catchment away from the disposal area, and f) a minimum 10 metre buffer area down-slope of the lowest irrigation line is included as part of the disposal area, and g) the disposal area is located within existing established vegetation that has at least 80 percent canopy cover, or h) the irrigation lines are covered by a minimum of 100 millimetres of topsoil, mulch, or bark, and 	Not applicable. Slopes are not greater than 10 degrees.

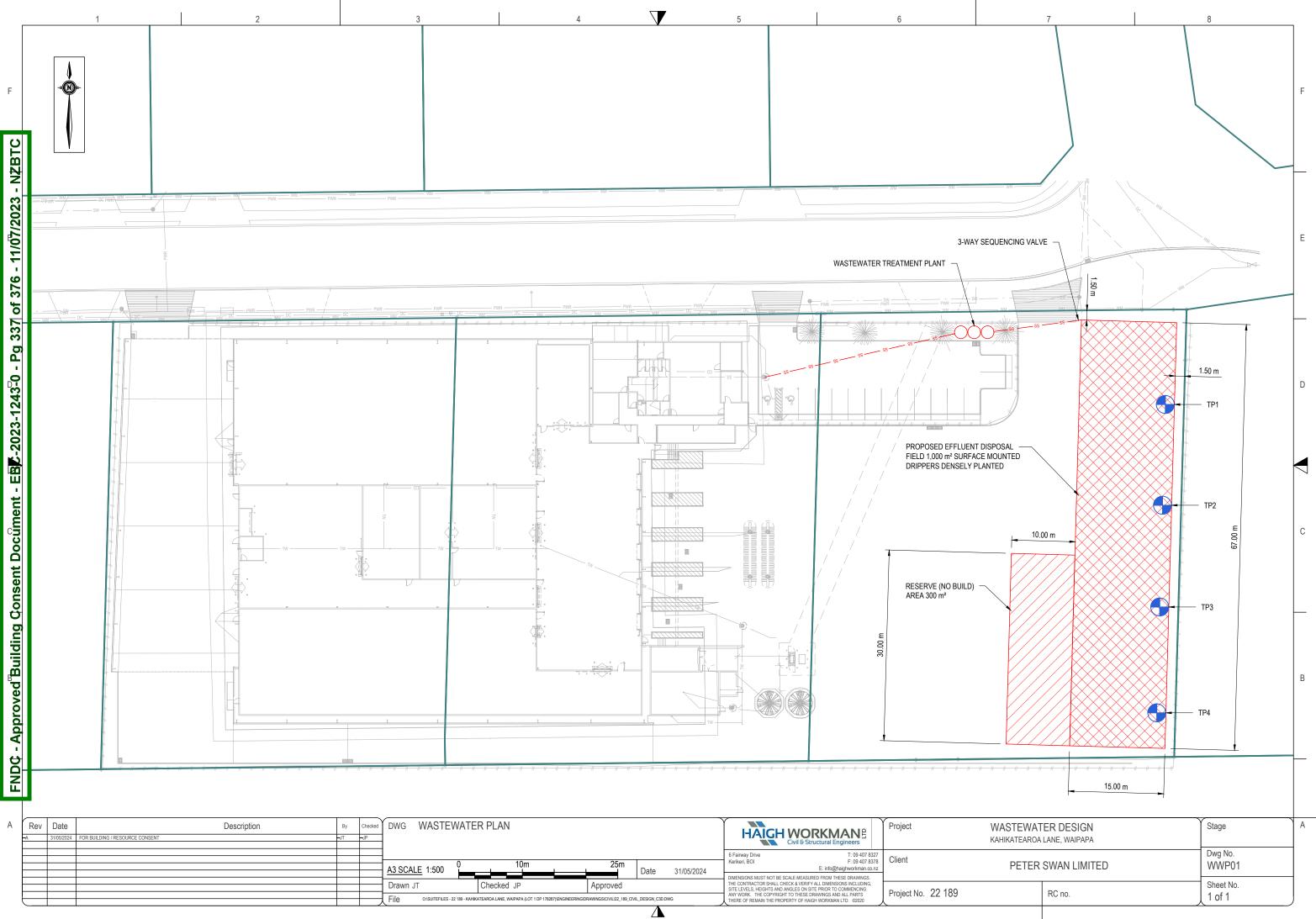
7)	the disposal area and reserve disposal area are situated outside the relevant exclusion areas and setbacks in Table 9: Exclusion areas and setback distances for on-site domestic wastewater systems, and	Surface water setbacks from kerbs and channels are not complied with
8)	for septic tank treatment systems, a filter that retains solids greater than 3.5 millimetres in size is fitted on the outlet, and	NA
9)	 the following reserve disposal areas are available at all times: a) one hundred percent of the existing effluent disposal area where the wastewater has received primary treatment or is only comprised of greywater, or b) thirty percent of the existing effluent disposal area where the wastewater has received secondary treatment or tertiary treatment, and 	30% Reserve area provided
10)	the on-site system is maintained so that it operates effectively at all times and maintenance is undertaken in accordance with the manufacturer's specifications, and	Proposed per Maintenance recommendations
11)	the discharge does not contaminate any groundwater water supply or surface water, and	Will comply given provided design parameters
12)	there is no surface runoff or ponding of wastewater, and	Will comply given provided design parameters
13)	there is no offensive or objectionable odour beyond the property boundary.	Will comply given provided design parameters

Exclusion areas and setback distances are provided in Table 9 of the plan and presented below:

Feature	Primary treated domestic type wastewater	Secondary and tertiary treated domestic type wastewater	Greywater
Exclusion areas			
Floodplain	5% annual exceedance probability	5% annual exceedance probability	5% annual exceedance probability
Horizontal setback distances			
Identified stormwater flow path (including a formed road with kerb and channel, and water-table drain) that is down-slope of the disposal area	5 metres	5 metres	5 metres
River, lake, stream, pond, dam or natural wetland	20 metres	15 metres	15 metres
Coastal marine area	20 metres	15 metres	15 metres
Existing water supply bore	20 metres	20 metres	20 metres
Property boundary	1.5 metres	1.5 metres	1.5 metres
Vertical setback distances		·	
Winter groundwater table	1.2 metres	0.6 metres	0.6 metres

6.2 District Plan

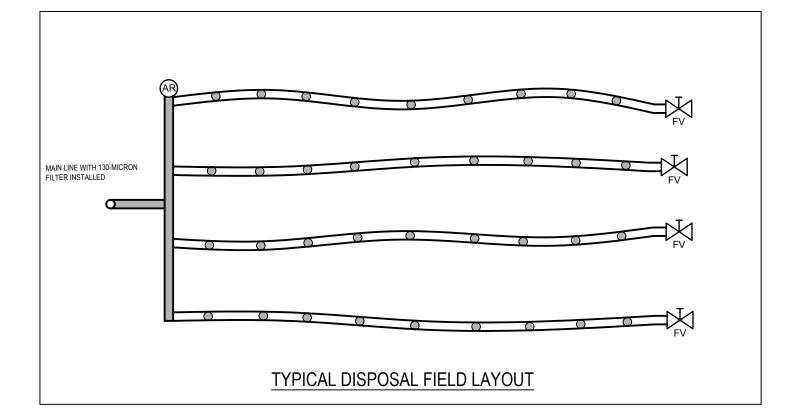
The Far North District Plan contains an additional rule relating to wastewater discharges to land:

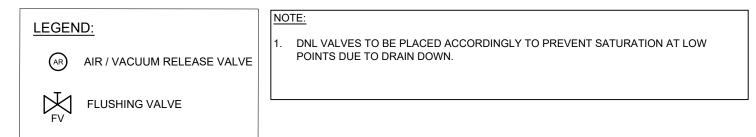

• District Plan Rule 12.7.6.1.4 specifies that effluent fields shall be located no closer than 30 m from any river, lake, wetland or the Coastal Marine Area.

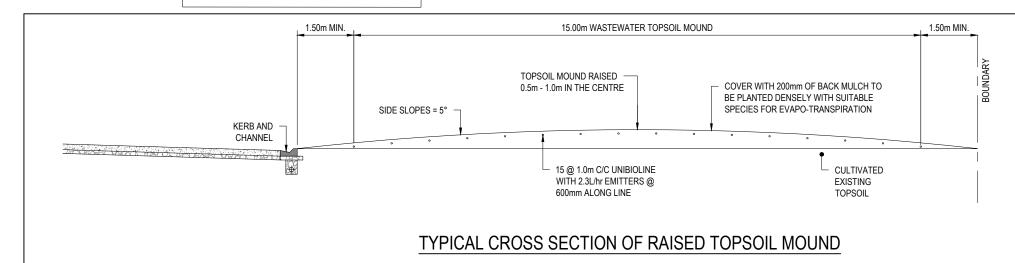
Kerikeri river is the nearest water waterway that meets this definition, but it is well separated from the site.

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd

Appendix A – Drawings




CIVIL\22_	_189_CIVIL_	DESIGN	_03
		/	Λ


1	2	3	4	5	6

F

FNDC - Approved[®]Building Consent Document - EBC-2023-1243[®]0 - Pg 338 of 376 - 11/07/2023 - NZBTC

А	Rev	Date	Description	Ву	Checked	DWG EFFLUENT DI	ISPOSAL AREA LAYOUT				HAIGH WOR		Project WA
ľ	A	31/05/2024	FOR BUILDING / RESOURCE CONSENT	JT	JP	-					Civil & Stru	ctural Engineers	KAHI
											6 Fairway Drive	T: 09 407 8327	
									1		Kerikeri, BOI	F: 09 407 8378	Client
					_	A3 SCALE Not to Scale	1		Date	31/05/2024	*	E: info@haighworkman.co.nz	
-					_				Duto	01/00/2024	DIMENSIONS MUST NOT BE SCALE MEASURE	D FROM THESE DRAWINGS.	
						Drawn JT	Checked JP	Approved			THE CONTRACTOR SHALL CHECK & VERIFY A SITE LEVELS, HEIGHTS AND ANGLES ON SITE	PRIOR TO COMMENCING	Project No. 22 189
Į						File 0:\SUITEFILES - 22 189 - KAHIK	KATEAROA LANE, WAIPAPA (LOT 1 DP 178287)\ENGINEERING\DI	RAWINGSICIVIL\22_189_WA	STEWATER_DE	ETAILS.DWG	ANY WORK. THE COPYRIGHT TO THESE DR. THERE OF REMAIN THE PROPERTY OF HAIGH		
	\sim		•			•			Å		•		

					В
				-	
	ER DESIGN LANE, WAIPAPA	Ì	Stage		A
PETER	SWAN LIMITED		Dwg No. WWD01		
	RC no.		Sheet No. 1 of 1		
		<i>z</i>			

F

Е

D

С

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd

Appendix B – Exploratory Hole Records

Client:	Peter Swan Lim	nited	Job:	22 189		Excavation Nu	ımber:	TP1		Logged by:	LP		
Address:	Kahikatearoa L	ane, Waipapa (L	ot 1 DP 178287)						Surface level:	78 m OTP (typ)		
Date of inspe	ction:	27-May-24					101						
Slope %:	Flat	Land form elei	ment:	Alluvium	Surface condition	ons:	Moist		Indicative dra	ainage:	very poor		
Surface stone	es:	Nil			Ground cover:		Grass		Watertable depth:		1m bgl		
Land surface	notes:	Greenfield site							Parent mater	rial:	Alluvium		
			1					1	1 1			1	
Layer	Lower depth (mm)	Horizon	Moisture conditions (see Note 2)	Colour (moist)	Field texture	Coarse fragments % volume	Structure (see Note 3)	Modified Emersion	Sample taken (Y/N)	Consistency (see Note 4)	Soil category	Other assessment	
1	0.15	А	moist	dark grey	silty clay	very few	-	-	Ν	-	-		
2	0.55	В	moist	dark grey/brown	clay loam	very few	high	-	Ν	firm	4	K _{sat} = 0.02	
3	1.50	В	wet	grey	clay	very few	moderate	-	Ν	firm	6		
2 Dry, mois 3 Apedal (n		urated. gle grain or mas	ssive. Pedal (obs	ervable peds) Wea very strong, rigid. S	-		ghtly, moderatel	y, very.					
	ents/observations r table at 1m t at 1.5m bgl	5:					Organisationa	l details/Logo:			MAN ral Engineers	Ê	
Overall soil ca	ategory assigned:		6 - medium to	heavy clay, modera	ate/high structur	Maximum dep	th of system:		02 m		1011		
	avourable for (list												

Client:	Peter Swan Lin	nited	Jop:	22 189		Excavation Nu	umber:	TP2		Logged by:	LP		
Address:	Kahikatearoa L	ane, Waipapa (L	ot 1 DP 178287.)			110			Surface level:	78 m OTP (typ)		
Date of inspe	ction:	27-May-24					110						
Slope %:	Flat	Land form eler	ment:	Alluvium	Surface condition	ons:	Moist		Indicative dra	ainage:	poor		
Surface stone	25:	Nil			Ground cover:		Grass		Watertable o	depth:	0.85 m bgl		
Land surface	notes:	Greenfield site							Parent material:		Alluvium		
Layer	Lower depth (mm)	Horizon	Moisture conditions (see Note 2)	Colour (moist)	Field texture	Coarse fragments % volume	Structure (see Note 3)	Modified Emersion	Sample taken (Y/N)	Consistency (see Note 4)	Soil category	Other assessment	
1	0.10	A	moist	brown/grey	fill		-	-	Ν	-	-		
2	0.35	В	moist	dark grey	clay loam	few	high	-	Ν	firm	4	K _{sat} = 0.07	
3	0.85	В	moist	orangish brown	clay loam	few	high	-	Ν	firm	4		
4	1.25		wet	mottles	clay	very few	weak		Ν	firm	6		
5													
 2 Dry, mois 3 Apedal (n 	• •	urated. Igle grain or mas	ssive. Pedal (obs	ervable peds) Weak very strong, rigid. S	-	0	htly, moderately	[,] , very.					
Ground wate	ents/observation: r table at 0.85 m l t at 1.25 m bgl						Organisationa	al details/Logo:		VORK vil & Structu	CMAN ral Engineers	8	
Overall soil ca	ategory assigned:		6 - medium to	heavy clay, modera	te/high structure	Maximum dep	oth of system:		0.2 m				
Soil appears f	favourable for (list	t system types):		irrigation/mound		Checked by:		John Papesch			101		

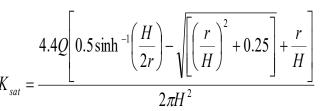
	Detection of the	-11 - 1	t. h.	22.400				T D2		t a secol b			
Client:	Peter Swan Lim		Job:	22 189		Excavation Nu	Imper:	TP3		Logged by:			
Address:		ane, Waipapa (L	ot 1 DP 178287)			101			Surface level:	78 m OTP (typ)		
Date of inspec	tion:	27-May-24					101						
Slope %:	Flat	Land form eler	nent:	Alluvium	Surface condition	ons:	Moist		Indicative dr	ainage:	poor		
Surface stones	5:	Nil			Ground cover:		Grass		Watertable o	•	0.7 m bgl		
Land surface n	iotes:	Greenfield site							Parent mate	rial:	Alluvium		
Layer	Lower depth (mm)	Horizon	Moisture conditions (see Note 2)	Colour (moist)	Field texture	Coarse fragments % volume	Structure (see Note 3)	Modified Emersion	Sample taken (Y/N)	Consistency (see Note 4)	Soil category	Other assessment	
1	0.25	Α	moist	dark brown	fill		-	-	Ν	-	-		
2	0.60	В	moist	grey	silty clay	very few	high	-	Ν	firm	4	K _{sat} = 0.09	
3	-	В	wet	grey w	sandy clay	few	moderate	-	Ν	firm	4		
4				mottles									
5													
 Dry, moist Apedal (no 	er form if >5 laye , very moist, satu p peds) Either sin - loose, very wea	urated. gle grain or mas	sive. Pedal (obs			-	slightly, modera	tely, very.					
-	ants/observations table at 0.7 m bg at 0.9 m bgl						Organisationa	l details/Logo:		VORK vil & Structu	MAN ral Engineers		
	tegory assigned:		6 - medium to	heavy clay, mod			th of system:		0.2 m				
Soil appears fa	vourable for (list	t system types):		irrigation/mou	nd	Checked by:		John Papesch					

Client: Address: Date of inspec Slope %:	tion: Flat	ane, Waipapa (L 27-May-24 Land form eler		22 189) Alluvium	Surface conditio	Excavation Nu	Moist	TP4	Indicative dra	U U	LP 78 m OTP (typ)	
Surface stones Land surface r		Nil Greenfield site		Ground cover:			Grass		Watertable c	•	0.9 m bgl Alluvium	
Layer	Lower depth (mm)	Horizon	Moisture conditions (see Note 2)	Colour (moist)	Field texture	Coarse fragments % volume	Structure (see Note 3)	Modified Emersion	Sample taken (Y/N)	Consistency (see Note 4)	Soil category	Other assessment
1	0.15	А	moist	grey/brown	fill	-	-	-	Ν	-	-	
2	0.80	В	moist	dark grey	clay loam	very few	high	-	Ν	firm	4	K _{sat} = 0.06
3	1.00	В	wet	grey	clay	very few	moderate	-	Ν	firm	6	
4												
 Dry, moist Apedal (no 	ter form if >5 laye t, very moist, satt o peds) Either sin - loose, very wea	urated. Igle grain or mas	sive. Pedal (obs	. ,	-	•	slightly, modera	tely, very.				
Ground water End of test pit	ents/observations table at 0.9 m by at 1 m bgl tegory assigned:		6 - medium to	heavy clay, mod	erate (bigh strur	Maximum den		I details/Logo:	QH V Cit	VORK vil & Structu	MAN ral Engineers	
	avourable for (list	t system types):		irrigation/mou		Checked by:	an or system.	John Papesch	0.2 111			

Test Pit 01 - 200 mm below ground level

Constant Head Permeability

Test Results



Location: Kahi	katearoa Lane, Waipapa (Lot 1 DP 178287)
	Ratearea Earley (Papapa (Bet 1 D1 1/0207)
Client: Peter	· Swan Limited
Tested by: LP	
Date tested: 27/0	5/2024

Depth of auger hole (cm)	50
Depth of water in auger hole (cm)	36
Average radius of auger hole (cm) 10	
Depth to any impermaeable layer Unknow	
Time elapsed between first filling and start of measurement	1 - 2 mins
Soil moisture at time of excavation	Moist

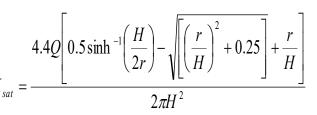
Permea	Permeameter and time readings		
Time	Level in tube	Velocity	
(s)	(cm)	(cm/s)	
0	56.2		
30	56.2		
60	55.8	0.01	
90	55.6	0.01	
120	55.4	0.01	
150	55.2	0.01	
180	55	0.01	
210	54.8	0.01	
240	54.8	0.00	
270	54.4	0.01	
300	54	0.01	
330	53.8	0.01	
360	53.6	0.01	
390	53.6	0.00	

Chosen infiltration velocity (cm/s)	0.01
Flowrate, Q (cm³/min)	6.59
Ksat (cm/min)	0.00
Ksat (m/day)	0.02

Test Pit 02 - 200 mm below ground level

Constant Head Permeability

Test Results



Job number:	22 189
Location:	Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)
Client:	Peter Swan Limited
Tested by:	LP
Date tested:	27/05/2024

Depth of auger hole (cm)	43	
Depth of water in auger hole (cm)	31	
Average radius of auger hole (cm)	m) 10	
Depth to any impermaeable layer	er Unknown	
Time elapsed between first filling and start of measurement	1 - 2 mins	
Soil moisture at time of excavation	Moist	

Permeameter and time readings		
Time	Level in tube	Velocity
(s)	(cm)	(cm/s)
0	53	
30	52.4	
60	51.8	0.02
90	51.2	0.02
120	50.4	0.03
150	49.8	0.02
180	49.2	0.02
210	48.6	0.02
240	47.8	0.03
270	47.2	0.02
300	46.6	0.02
330	46	0.02
360	45.4	0.02
390	44.8	0.02
420	44.2	0.02
450	43.4	0.03

Chosen infiltration velocity (cm/s)	0.02
Flowrate, Q (cm³/min)	19.55
Ksat (cm/min)	0.00
Ksat (m/day)	0.07

Phone: +64 9 407 8327 • Fax: +64 9 407 8378 • info@haighworkman.co.nz • www.haighworkman.co.nz PO Box 89 • 6 Fairway Drive • Kerikeri 0245 • New Zealand

Test Pit 03 - 250 mm below ground level

Constant Head Permeability

Test Results

Job number:	22 189
Location:	Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)
Client:	Peter Swan Limited
Tested by:	LP
Date tested:	27/05/2024

Depth of auger hole (cm)	54
Depth of water in auger hole (cm) 34	
Average radius of auger hole (cm)	10
Depth to any impermaeable layer Unknow	
Time elapsed between first filling and start of measurement	1 - 2 mins
Soil moisture at time of excavation	Moist

Permeameter and time readings		
Time	Level in tube	Velocity
	(cm)	-
(s)		(cm/s)
0	55	
40	53.2	
60	52.6	0.03
100	51	0.04
120	50.6	0.02
150	49.8	0.03
180	48.6	0.04
210	47.8	0.03
240	46.6	0.04
270	45.6	0.03
300	44.6	0.03
330	43.8	0.03
360	42.6	0.04
390	41.8	0.03
420	40.8	0.03
450	39.8	0.03
480	38.8	0.03

Chosen infiltration velocity (cm/s)	0.03
Flowrate, Q (cm³/min)	29.24
Ksat (cm/min)	0.01
Ksat (m/day)	0.09

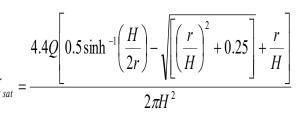
$$K_{sat} = \frac{4.4Q \left[0.5 \sinh^{-1} \left(\frac{H}{2r} \right) - \sqrt{\left[\left(\frac{r}{H} \right)^2 + 0.25 \right]} + \frac{r}{H} \right]}{2\pi H^2}$$

Phone: +64 9 407 8327 • Fax: +64 9 407 8378 • info@haighworkman.co.nz • www.haighworkman.co.nz PO Box 89 • 6 Fairway Drive • Kerikeri 0245 • New Zealand

Test Pit 04 - 250 mm below ground level

Constant Head Permeability

Test Results



Job number:	22 189
Location:	Kahikatearoa Lane, Waipapa (Lot 1 DP 178287)
Client:	Peter Swan Limited
Tested by:	LP
Date tested:	27/05/2024

Depth of auger hole (cm)	43
Depth of water in auger hole (cm)	27
Average radius of auger hole (cm)	10
Depth to any impermaeable layer	Unknown
Time elapsed between first filling and start of measurement	1 - 2 mins
Soil moisture at time of excavation	Moist

Permea	meter and time read	ings
Time	Level in tube	Velocity
(s)	(cm)	(cm/s)
0	54.8	
30	54.2	
60	53.6	0.02
90	53.2	0.01
120	52.6	0.02
150	52.2	0.01
180	51.6	0.02
210	51.2	0.01
240	50.6	0.02
270	50.2	0.01
300	49.6	0.02
330	49	0.02
360	48.6	0.01
390	48	0.02
420	47.6	0.01

Chosen infiltration velocity (cm/s)	0.02
Flowrate, Q (cm³/min)	15.44
Ksat (cm/min)	0.00
Ksat (m/day)	0.06

Phone: +64 9 407 8327 • Fax: +64 9 407 8378 • info@haighworkman.co.nz • www.haighworkman.co.nz PO Box 89 • 6 Fairway Drive • Kerikeri 0245 • New Zealand

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd

Appendix C – FNDC Wastewater Checklist

Onsite Wastewater Disposal Investigation

This form is to be read in con Part 4: Means of Compliance	njunction with <u>AS/NZS 1547:2012</u> (or any a	amendments as applicable), and, in particular with
Part A – Contact Details		
1 - Applicant		
Name:	Peter Swan Ltd	
Property Address:	6-9 Kahikatearoa Lane, Waipapa	
Lot/DP Number:	Lots 6-8 DP 597982	
2 – Consultant / Site Evaluato	pr	
Site Evaluator Name:	John Papesch	
Company Name:	Haigh Workman Ltd	
Postal Address:	PO Box 89, Kerikeri	
Business Phone:	09 407 8327	Mobile: 027 411 9944
Email:	johnp@haighworkman.co.nz	
SQEP Registered ² : 🗹 Yes 🕻 supplied below. Name of SQEP:	D No If no, details of suitably registered	SQEP who will countersign the report are to be
Company Name:		
Postal Address:		
Business Phone:		Mobile:
Email:		

² It is a requirement that the Evaluator be SQEP registered to carry out on-site effluent investigations/designs. If not, then evaluation/design will need to be counter-signed by a suitably registered SQEP

Part B - Site and Soil Evaluation

1: Desk Study

Requirements (\checkmark appropriate box) Please complete **all** options. (*If more than one option applies to land under consideration, please clarify with supporting information*)

	FNDC REQUIREMENT			APPLIES TO LOT(S)	COMMENTS
1	Stability Risk				-
~	Low instability risk			6-8	Flat alluvial ground
	Medium instability risk				
	High instability risk				
2	Effluent on slope stability				
✓	Low disposal potential			6-8	Flat alluvial ground
	Moderate disposal potential				
	High disposal potential				
3	Effluent suitability				·
	Medium unsuitability				
✓	High unsuitability			6-8	Cat 6 soils, High ground water table
4	Flood susceptibility				
	Is flood susceptible				
✓	Is partially flood susceptible			6-8	See flood hazard section
	Is not flood susceptible				
5	Streams				
Are	there streams on or		Yes		
	adjacent to land under investigation?		No		
6	GIS land resources layer – a	quifer	s at risk		
Is la	Is land situated over or adjacent		Yes		
to a	quifer?	✓	No		
7	Annual Rainfall (HIRDS)			1500 mm	

Note: It is to be noted that all information obtained off FNDC GIS/Hazard Maps is to be taken as a guide only.

Note: All information obtained from the above sites is to be confirmed by a specific site investigation as localised conditions could vary substantially. However, should the above data checks indicate the potential for a hazard/non-complying activity etc., this must be further investigated to confirm/deny the indicated situation.

2: On-Site Evaluation

a. Determination of Soil Category (refer table 4.1.1 AS/NZS 1547:2012) (</ appropriate box)

Soil Category	Struc	ture	Applies to lot(s)	Comments
1 Gravels & Sands		Structureless (massive)		
2 Sandy loams		Weakly Structured		
		Massive		
3 Loams		High/Moderate structured		
		Weakly structured or Massive		
4 Clay loams		High/moderate structured		
		Weakly structured		
		Massive		
5 Light clays		Strongly structured		
		Moderately structured		
		Weakly structured or massive		
6 Medium to heavy clays		Strongly structured		
	\checkmark	Moderately structured	6-8	See site investigation
		Weakly structured or massive		

Note: Refer 4.1 A4 – Soil Assessment <u>AS/NZS 1547:2012</u> for assessment criteria.

Note: Details of the method used to determine soil type etc. are to be clearly stated, along with positions of boreholes/test pits etc. clearly marked on a site plan. Bore logs are to be provided. Photos should be included.

Note: The site plan should also clearly show the intended area for effluent disposal, along with any site features such as drains, water bores, overland flows etc., along with separation distance achieved.

On-Site Evaluation Continued

b. Site Characteristics for Proposed Disposal Area: (if there is a marked difference between sites, please fill in a separate form for each site and clearly note which site the assessment applies to) (ü appropriate box)

	DETAILS			APPLIES TO SITE(S)					
1	Flooding po	tential to proposed fi	eld an	d reserve field (refer note 1 below	/)				
\checkmark	Fields will not flood, or								
	Fields will flood in								
	20% AEP event								
	5% AEP event								
	1% AEP event								
2	Surface water separation to proposed field and reserve field (refer note 2 below)								
	Main/reserv with NRC ru	re disposal field co les	omply						
✓	Main/reserv comply with	e disposal field do NRC rules	o not	<5 m from kerb line, <5 m from	drain	in neighboring property			
3	Surface wat	er separation to prop	osed f	ield and reserve field (refer note 2	2 belo	w)			
	Main/reserv with NRC ru	re disposal field co les	omply						
	Main/reserv comply with	e disposal field do NRC rules	o not						
4	Winter grou	nd water separation	to pro	posed field and reserve field (refe	r note	e 3 below)			
✓	Main and re with NRC ru	eserve disposal field c	omply	Raised topsoil mound					
	Main and re comply with	eserve disposal field de NRC rules	D NOT						
5	Slope of gro	und of proposed field	l and r	eserve field (refer note 4)					
Descri	iption	Fopsoil mound with 5-	degree	e side slopes					
6	Shape of gro	ound of proposed fiel	d and	reserve field (Refer note 5 below)					
	Waxing dive	ergent		Linear divergent		Waning divergent			
	Waxing plar	nar	~	Liner planar		Waning planar			
	Waxing con	vergent		Linear convergent		Waning convergent			
Comm	nents (Ground is near flat and	d prone	e to ponding					

	DETAILS					
	DETAILS	APPLIES TO SITE(S)				
7	Intended water supply source					
	Public supply					
\checkmark	Rainwater	Lots 6-8				
	Bore					
8	Proposed method of disposal and recom	mended Daily Loading rate (DLR) (re	efer note 6 below)			
Descr	iption					
Raised	d topsoil mound, densely planted. DIR 3 mr	m/day				
		i				
Peak	oading factored in (refer not 6 below)	Yes	V No			
Comn	nents Nature of wastewater genera	tion is driven by staffing				
9	Site exposure (refer note 7 below)	Description	Applies to Site(s)			
	aspect	Open				
	ominant wind direction	South-west				
	nce of shelter belts	Along eastern boundary				
Prese struct	, , , , ,	Very few				
10	Proximity of water bores (include adjace	ent to properties) (refer note 9 belov	v)			
None			<u>·</u>			
11	Visible evidence of slips / instability (ref	ar not 9 holow)				
	visible evidence of slips / instability (ren					
Nil						
12	Total suitable area available for type of o	effluent disposal proposed (including	g reserve area)			
1,000	m2					
13	Setback areas proposed (if any) (refer no	ote 10 below)				
1.5 m	from boundaries and kerb lines					

Notes

- 1. If the FNDC hazard maps/GIS indicate a flooding susceptibility on the site being evaluated, an on -site evaluation is to be carried out to determine the effects from 20%, 5% and 1% AEP storm events. This evaluation is to include all calculations to substantiate conclusions drawn. If necessary, include a detailed contour plan and photos.
- 2. NRC Water & Soil plan defines surface water as 'All water, flowing or not, above the ground. It includes water in continually or intermittently flowing rivers, artificial watercourses, lakes and wetlands, and water impounded by structures such as dams or weirs but does not include water while in pipes, tanks, cisterns, nor water within the Coastal Marine Area'. By this definition, separation (complying with NRC rules) is to be maintained by both the proposed disposal and reserve areas from any overland flowpaths and/or swale drains etc. or R/C will be required from NRC. Surface water is to be clearly marked on each site plan, showing the extent of a 1% AEP storm event, and detailing separation distances to main/reserve disposal areas.
- 3. Positions of test borehole/s to be shown and bore logs to be provided. Separation (complying with NRC rules) is to be maintained by both the proposed disposal and reserve areas from winter ground water level or R/C will be required from NRC. If the investigation is done outside of the winter period, allowance is to be made in determining the likely winter level.
- 4. Slopes of ground are to be compared with those recommended maximums for type of system proposed (refer Appendix 4.2B AS/NZS 1547:2012). Designs exceeding those maximums will require specific design to justify the proposal and may also need Resource Consent from NRC.
- 5. Shape of ground is important as it will determine whether there is potential for concentrated overland flows from the upper slopes and also if effluent might be concentrated at base of slope if leeching occurs. Refer Figure 4.1B2 AS/NZS 1547:2012.
- 6. The proposed system (for residential developments) should be sized to accommodate an average 3 bedroom house with 5 people. Sites in holiday areas need to take peak loading into effect in determining daily volumes. The design must state what DLR was used to determine area necessary (including reserve area). If ground conditions are marginal for type of disposal proposed, then a soil permeability test utilising the constant head method is to be carried out across the proposed disposal area. Refer Appendix 4.1F AS/NZS 1547:2012.
- 7. The site aspect is important as a north-facing site that is not sheltered from wind and sun by shelterbelts or other topographical features or structures will perform far better than a south-facing site on the lee of a hill that is shaded from wind and sun etc.
- 8. If any effluent disposal area (including any reserve area) proposed has or is adjacent to areas that show signs of instability, then a full report from a CPEng (Geotech) will be required to justify the viability of the area for effluent disposal.
- 9. If there are any water bores on the subject property or adjacent properties then a site plan will be required showing bore positions in relation to any proposed effluent field(s).
- 10. If setback areas are proposed to mitigate effects, the extent and position/s need to be shown on a site plan.

On-Site Wastewater System New Distribution Centre at Lots 6-8 Kahikatearoa Lane, Waipapa For Peter Swan Ltd

Appendix D – Producer Statement - Design

PRODUCER STATEMENT-PS1 D

PRODUCER STAT DESIGN	EMENT-PSI	(association of consulting and engineering	engineering new zealand
uilding Code Clause(s):	G13		Job number: 22 189	
SUED BY: ngineering Design Firm)	Haigh Workman Ltd			
D: <i>lient)</i>	Peter Swan Ltd			
O BE SUPPLIED TO: uilding Consent Authority)	Far North District Council			
NRESPECT OF: escription of building work))	New build			
Γ: ddress)	15-19 Kahikatearoa Lane, Wai	ipapa		
EGAL DESCRIPTION	Lots 6-8 DP 567982			
e have been engaged by Pete	r Swan Ltd to provide:			
n-Site Wastewater System				
respect of the requirements of the proposed build	of the Clause(s) of the Building Cooling work.	de specified above for	r part only, as specified	l in the attached
he design carried out by Haig	h Workman Ltd has been prepared	in accordance with:		
compliance docum /acceptable solutio	ents issued by the Ministry of Busi n): VM4	ness, Innovation & E	mployment (Verificatio	on method
	overed by this producer statement is and other documents set out in the		wings specified in the a	ttached Schedule,
n behalf of Haigh Workman	Ltd, and subject to:			
all proprietary products me	eeting their performance specificati	on requirements;		
pelieve on reasonable ground	s that:			
attached Schedule, will con	l in accordance with the drawings, mply with the relevant provisions c ertaken the design have the necessa	of the Building Code s	specified above; and that	
recommend the CM3 level of				
	-			

FNDC - Approved Building Consent Document - EBC-2023<u>1243-0 - Pg 356 of 376 - 11/07/2023 - N</u>ZBTC

I, John Francis Papesch, am:

- CPEng number 224301
- and hold the following qualifications: B.E.

aigh Workman Ltd holds a current policy of Professional Indemnity Insurance no less than \$200,000.

Haigh Workman Ltd is a member of ACE New Zealand.

GNED BY:

ignature):

John Francis Papesch

Date: 31/5/2024

N BEHALF OF:

Haigh Workman Ltd

Note: This statement has been prepared solely for Far North District Council and shall not be relied upon by any other person or entity. Any biblity in relation to this statement accrues to Haigh Workman Ltd only. As a condition of reliance on this statement, Far North District Council accepts that the total maximum amount of liability of any kind arising from this statement and all other statements provided to Far orth District Council in relation to this building work, whether in tort or otherwise, is limited to the sum of \$200,000.

is form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

SCHEDULE TO PS1

Please include an itemised list of all referenced documents, drawings, or other supporting materials in relation to this producer statement below:

Engineering Drawing Set: Haigh Workman wastewater drawings WWP01 and WWD01, ref 22 189 dated 31 May 2024 Engineering Calculations: Haigh Workman report "On-Site Wastewater System", ref 22 189 dated 31 May 2024

mited Scope of Engagement

e have been engaged by Peter Swan Ltd to provide services in respect of the requirements of the Clause(s) of the Building Code ecified above for the following parts of the proposed building work:

n-Site Wastewater System

GUIDANCE ON USE OF PRODUCER STATEMENTS

Information on the use of Producer Statements and Construction Monitoring Guidelines can be found on either the ACE New Zealand or **Engineering New Zealand** websites.

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee nsisting of members of the New Zealand Institute of Architects (NZIA), Institution of Professional Engineers New Zealand (now Engineering w Zealand), Association of Consulting and Engineering New Zealand (ACE NZ) in consultation with the Building Officials Institute of New aland (BOINZ). The original suite of producer statements has been revised at the date of this form to ensure standard use within the industry. ĨZ,

The producer statement system is intended to provide Building Consent Authorities (BCAs) with part of the reasonable grounds necessary for the reprise use of a Building Consent or a Code Compliance Certificate, without necessarily having to duplicate review of design or construction **Note of a Bandang Consent of a Code Compliance Continuate, while a necessarily having to appread for us of a construction of a constructi**

Qp oducer statement for establishing reasonable grounds to issue a Building Consent;

P2 DESIGN REVIEW: Intended for use by a suitably qualified independent engineering design review professional where the BCA accepts • at independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

OP3 CONSTRUCTION: Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 20112

4 CONSTRUCTION REVIEW: Intended for use by a suitably qualified independent engineering construction monitoring professional • P34 CONSTRUCTION REVIEW: Intended for use by a suitably quantical independent engineering contracting contraction of the building works where the BCA requests a producer statement prior to issuing Sa Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

• Competence of Engineering Professional

is statement is made by an engineering firm that has undertaken a contract of services for the services named, and is signed by a person at thorised by that firm to verify the processes within the firm and competence of its personnel.

The person signing the Producer Statement on behalf of the engineering firm will have a professional qualification and proven current competence through registration on a national competence-based register such as a Chartered Professional Engineer (CPEng).

Membership of a professional body, such as Engineering New Zealand provides additional assurance of the designer's standing within the pofession. If the engineering firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm.

P rsons or firms meeting these criteria satisfy the term "suitably qualified independent engineering professional".

ofessional Indemnity Insurance

part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum vel.

Te PI Insurance minimum stated on the front of this form reflects standard practice for the relationship between the BCA and the engineering of m. Professional Services during Construction Phase

There are several levels of service that an engineering firm may provide during the construction phase of a project (CM1-CM5 for DECA is encouraged to require that the service to be provided by the engineering firm is appropriate for the project concerned. Requirement to provide Producer Statement PS4 ere are several levels of service that an engineering firm may provide during the construction phase of a project (CM1-CM5 for engineers3).

 B
 CAS should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the the building consent is issued. No design professional should be expected to provide a producer statement unless such a requirement forms of to Haigh Workman Ltd's engagement.

 Fr
 Also:

 Image: Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013

 NZLA Standard Conditions of Contract SCC 2011

 Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand/Engineering New Zealand 2004)

 PN01 Guidelines on Producer Statements

 www.engineeringnz.org

 \Box BCAs should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the

ш

Resource Consent

FNDC - Approved Building Consent Document - EBC-2023-1243-0 - Pg 360 of 376 - 11/07/2023 - NZ 1 Advice Note: 2 (a) (b) (c) (d) (e) (f) (g)

Pursuant to the Resource Management Act 1991, the Northland Regional Council (hereinafter called "the council") does hereby grant a Resource Consent to:

WINDERMERE ENERGY LIMITED

To undertake the following activities on Lot 1 DP 178287 and Lot 13 DP 363106 (66 Klinac Lane Waipapa), at or about location co-ordinates 1683365E 6103025N:

Note: All location co-ordinates in this document refer to Geodetic Datum 2000, New Zealand Transverse Mercator Projection.

AUT.043067.01.01	Earthworks for site development within a high-risk flood hazard zone.
AUT.043067.02.01	Divert stormwater during land disturbing activities.
AUT.043067.03.01	Discharge stormwater during land disturbance activities.
AUT.043067.04.01	Divert floodwater within a subdivision development.

Subject to the following conditions:

The Consent Holder shall notify the council's assigned monitoring officer in writing of the date the works are intended to commence, at least one week beforehand. The Consent Holder shall arrange for a site meeting between the Consent Holder's principal earthmoving contractor and the council's assigned monitoring officer, which shall be held on site prior to any earthworks commencing.

Notification to the council may be made by email to info@nrc.govt.nz.

- The location and nature of the earthworks shall be undertaken in general accordance with the attached Haigh Workman Civil and Structural Engineers Limited drawings titled:
 - DWG: "Roading and Services A", DWG No. P1, Sheet 1 of 1, Dated 28/09/2021;
 - DWG: "Roading and Services B"; DWG No. P2, Sheet 1 of 2, Dated 28/09/2021;
 - DWG: "Cul de sac Detail Plan", DWG No. P3, Sheet 3 of 3, Dated 28/09/2021;
 - DWG: "Roading Typical Section", DWG No. DE1, Sheet 1 of 2, Dated 28/09/2021;
 - DWG: "Typical Section Over Stormwater Pipes"; DWG No. DE2; Sheet 2 of 2, Dated 28/09/2021;
 - DWG: "Proposed Fill Plan"; DWG No. 16 153A/06; Sheet 6 of 6, Dated 30/11/2016;
 - DWG: "Fill Methodology, Erosion Sediment Control Plan"; DWG No. 16 153A/07, Sheet 7 of 7, Dated 30/11/2016.

However, if there are any differences or apparent conflict between these documents and any conditions of these consents, then the conditions of consent shall prevail.

- 3 As part of the written notice required by Condition 1 the Consent Holder or its agent/contractor shall submit a Construction Environmental Management Plan (CEMP) to the council's assigned monitoring officer for certification by the council's Compliance Manager. The CEMP must be prepared by a suitably qualified person who shall provide certification that the erosion and sediment controls in the CEMP have been designed in accordance with GD05. As a minimum, the CEMP shall include the following:
 - (a) The expected duration (timing and staging) of earthworks;
 - (b) Details of all erosion and sediment controls;
 - (c) The commencement and completion dates for the implementation of the proposed erosion and sediment controls;
 - (d) Details of surface revegetation of disturbed sites and other surface covering measures to minimise erosion and sediment runoff following construction;
 - (e) Measures to ensure sediment or dust discharge from the earthwork's activity does not create a nuisance on neighbouring properties;
 - (f) Measures to prevent spillage of fuel, oil and similar contaminants;
 - (g) Contingency containment and clean-up provisions in the event of accidental spillage of hazardous substances;
 - (h) Means of ensuring contractor compliance with the CEMP; and
 - (i) The name and contact telephone number of the person responsible for monitoring and maintaining all erosion and sediment control measures.
- 4 Sediment control measures shall be constructed and maintained in accordance with the principles and practices contained within the Auckland Council document entitled "2016/005: Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region" (GD05). Where there are inconsistencies between any part of GD05 and the conditions of these consents, then the conditions of these consents shall prevail.
- 5 Erosion and sediment controls shall be installed prior to the commencement of earthworks (other than those required for the erosion and sediment controls) within an area of works and shall be retained until the site is stable against erosion and sediment discharges.
- 6 The installation of all erosion and sediment controls shall be supervised by an appropriately qualified and experienced person. The Consent Holder shall provide to the council's assigned monitoring officer certification from the appropriately qualified and experienced person who supervised the installation of the erosion and sediment controls that they have been installed in accordance with the requirements of GD05.
- 7 Prior to the commencement of earthworks on-site, a stabilised construction entrance to the site shall be installed to minimise the tracking of spoil or debris onto off-site public road surfaces. All material tracked onto off-site surfaces as a result of the exercise of these consents shall be removed as soon as possible, but at least daily. The stabilised construction entrance shall be maintained throughout the duration of earthworks operations.
- 8 No earthworks shall be carried out between 1 May and 30 September in any year unless the prior written agreement of the council's Compliance Manager has been obtained.
- 9 Any request to undertake works between 1 May and 30 September, inclusive, in any year must be in writing and shall be made at least two weeks prior to the proposed date that the works are required to be undertaken.

- 10 All stormwater diversion drains, and channels shall be capable of conveying stormwater during not less than the estimated 1 in 20-year rainfall event and, if they are constructed on grades greater than 2%, the outlets shall be adequately protected to prevent erosion occurring.
- 11 Topsoil and fill material shall not be stockpiled anywhere within a High Risk (10% AEP) Flood Hazard Zone or any flood overland flow path.
- 12 All offsite stormwater shall be directed away from the earthworks area.
- 13 No drainage pathways shall be constructed or permitted to flow over fill areas in a manner that creates erosion of the fill material.
- 14 No slash, soil, debris and detritus associated with the exercise of these consents shall be placed in a position where it may be washed into any downstream water body.
- 15 All earthworks operations shall be carried out in a manner that minimises the potential for slope instability and soil erosion. Effective mitigation measures shall be installed as required to mitigate and/or remedy any slope failures.
- 16 All bare areas of land and fill shall be covered with aggregate, or top soiled and established with a suitable grass/legume mixture to achieve an 80% groundcover within one month of the completion of earthworks. Temporary mulching or other suitable groundcover material shall be applied to achieve total groundcover of any areas unable to achieve the above requirements.
- 17 The exercise of these consents shall not give rise to any discharge of contaminants, including dust, which in the opinion of the monitoring officer of the council is noxious, dangerous, offensive or objectionable at or beyond the property boundary.
- 18 Refuelling and servicing of machinery shall not be carried out in such a way that soil or water at the site is contaminated. Where an accidental spillage to land occurs, all contaminated soil shall be collected and removed to a suitable disposal site.
- 19 In the event of archaeological sites or kõiwi being uncovered, activities in the vicinity of the discovery shall cease and the Consent Holder shall contact Heritage New Zealand Pouhere Taonga. Work shall not recommence in the area of the discovery until the relevant Heritage New Zealand Pouhere Taonga approval has been obtained.

Advice Note: The Heritage New Zealand Pouhere Taonga Act 2014 makes it unlawful for any person to destroy, damage or modify the whole or any part of an archaeological site without the prior authority of Heritage New Zealand Pouhere Taonga.

- 20 The Consent Holder shall, on becoming aware of any discharge associated with the Consent Holder's operations that is not authorised by these consents:
 - (a) Immediately take such action, or execute such work as may be necessary, to stop and or contain the discharge; and
 - (b) Immediately notify the council by telephone of the discharge; and
 - (c) Take all reasonable steps to remedy or mitigate any adverse effects on the environment resulting from the discharge; and
 - (d) Report to the council's Compliance Manager in writing within one week on the cause of the discharge and the steps taken, or being taken, to effectively control or prevent the discharge.

For telephone notification during the council's opening hours, the council's assigned monitoring officer for these consents shall be contacted. If that person cannot be spoken to directly, or it is outside of the council's opening hours, then the Environmental Hotline shall be contacted.

Advice Note: The Environmental Hotline is a 24-hour, seven day a week, service that is free to call on 0800 504 639.

- 21 The council may, in accordance with Section 128 of the Resource Management Act 1991, serve notice on the Consent Holder of its intention to review the conditions annually during the month of September for any one or more of the following purposes.
 - (a) To deal with any adverse effects on the environment that may arise from the exercise of these consents and which it is appropriate to deal with at a later stage; or
 - (b) To require the adoption of the best practicable option to remove or reduce any adverse effect on the environment.

The Consent Holder shall meet all reasonable costs of any such review.

EXPIRY DATE: 31 OCTOBER 2026

These consents were granted on 7 October 2021 under delegated authority from the council by Paul Maxwell, Coastal and Works Consents Manager and, pursuant to Section 133A of the Resource Management Act 1991, a minor correction has been made to the wording of Condition 11. This correction has been authorised under delegated authority from the council by Stuart Savill, Consents Manager on 28 October 2021.

Note: The plans attached to this consent are reduced copies and therefore may not be to scale and may be difficult to read. In the event that compliance and/or enforcement action is to be based on compliance with the attached plans, it is important that the original plans, are sighted and used. Originals of the plans referred to are available for viewing at the council's Whangārei office.

4

Application Number: APP.045320.01.01

Application Type: Non-notified New

Applicant Name: Bidfood Limited

Note: In this decision document, "application", "activity" and "consent" refer to all activities that are part of the consent application.

REASONS FOR THE DECISION

This consent is granted pursuant to Section 104B of the Resource Management Act 1991 (the Act). In reaching this decision, the council has considered the matters outlined in Part 2 and Section 104 of the Act. It has been determined that:

- (1) The adverse effects of the proposed activity on the environment will be no more than minor.
- (2) The proposed activity is consistent with the relevant statutory planning documents and regulations.
- (3) The granting of this resource consent achieves the purposes of the Act.

Summary of Activity

The application is for a resource consents for earthworks and associated diversion and discharge of stormwater properties during works for site development on properties (Lots 6-8 DP 567982) at 19 Kahikatearoa Lane, Waipapa. The majority the works are located within a mapped flood hazard area.

The works are required for preloading a site proposed to be developed in preparation for construction a large warehouse and distribution facility. Once preloading has concluded additional works will be required to remove preload material and establish ground levels required for the development.

The extent of the preloading works will cover 5,325 square metre. The total volume of 6,058 cubic metres of aggregate is proposed to be deposited on the site to preload the building platform. The maximum depth of the preload material above existing ground level is approximately 1.12 metres with another 300 mm of the fill being below the existing ground level where topsoil has been removed. Once the preload period is at an end, the upper 500 millimetres (or approximately 2,202 cubic metres) of the metal fill will be removed from the building platform with the remaining finished floor level within the building platform area being maintained at FL 79.2m being approximately 620mm above existing ground level and 600mm above the 100 year ARI flood level The excess metal removed from the foundation area will be stored on site for use in the construction of the accessways and parking areas.

Regional Plan Rule(s) Affected

The earthworks within the flood hazard area will involve more than 1, 000 cubic metres of earth being moved or placed in any 12-month period therefore the earthworks and any associated diversion and discharge of stormwater during the works are deemed to be discretionary activities in accordance with Rule C.8.3.4 of the Proposed Regional Plan for Northland (PRP).

Actual and Potential Effects (Section 104(1)(a) of the Act)

The adverse effects on the environment of this activity have been determined to be no more than minor for the following reasons:

The closest water course to the area of the proposed works is the Kerikeri River. Effects on downstream water quality arising from stormwater discharges will be minimised by timing of works during the drier part of the year and installation of appropriate sediment control measures in accordance with the principles and practices set out in the Auckland Council technical publication *"2016/005: Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region"* (GD05).

Windy and dry weather conditions have the potential to create dust nuisance beyond the property boundary. Wetting bare areas during works when required and stabilising and replanting bare areas following works will minimise the risk of wind erosion and dust nuisance.

A large of the site, particularly the western end has been identified by the PRP maps as a River Flood Hazard Zone. Permanently raising the ground level within the site has the potential to increase flooding on adjacent properties due to the displacement of the flood plain. The applicant's consulting engineer provided an assessment of the risk of increased flooding on neighbouring properties following site development as a result of the works and the report concluded that the flood levels post development will be no greater that the present flood levels.

Cultural Effects

The application has been circulated to tangata whenua who have registered with council as having an interest in resource consent applications within the area of the activity. No response has been received by council from tangata whenua.

Relevant Statutory Provisions (Section 104(1)(b) of the Act)

The council has determined that the granting of this resource consent is consistent with the objectives and policies contained in Sections D.1, D.2, D.4 and F of the PRP.

The proposed activity contravenes Section 15 of the Act, and therefore the council has also had regard to the matters outlined in Section 105 of the Act. The council is satisfied that the activity will not give rise to the effects outlined in Section 107 of the Act after reasonable mixing.

Te Rūnanga o Ngāti Rēhia has an iwi/hapū environmental management plan relevant to the location of this activity. This plan has been taken into account during the processing of the application and the granting of this consent is not considered to be contrary to the objectives and policies contained within Chapter 10 Whenua of the Ngāti Rēhia Hapū Environmental Management Plan (2014).

Duration of the Consent

No duration of consent was requested by the applicant. A period of 5 years has been determined to be appropriate in the circumstances of the proposal. In determining duration, regard has also been had to Policy D.2.14 of the PRP.

Name and Signature of Authorised Person:

Paul Maxwell Coastal and Works Consents Manager

28 September 2023

Resource Consent

m Pursuant to the Resource Management Act 1991, the Northland Regional Council (hereinafter called "the council") does hereby grant a Resource Consent to: **BIDFOOD LIMITED** To undertake the following activities on Lot 6, 567982, Lot 7 DP 567982 and Lot 8 DP 567982 (19 Kahikatearoa Lane, Waipapa), at or about location co-ordinates 1683452E 6102971N: Note: All location co-ordinates in this document refer to Geodetic Datum 2000, New Zealand Transverse Mercator Projection. AUT.045320.01.01 Earthworks for site development within a flood hazard zone. AUT.045320.02.01 Divert stormwater during land disturbance activities. AUT.045320.03.01 Discharge stormwater to land during land disturbance activities. Subject to the following conditions: 1 At least two weeks prior to the commencement of any works authorised by these consents on-site, the Consent Holder must notify the council's assigned monitoring officer in writing of the date that the works are intended to commence. The Consent Holder must arrange for a site meeting between the Consent Holder's principal earthworks contractor and the council's assigned monitoring officer, which must be held on site prior to any earthworks commencing. Advice Note: Notification to the council may be made by email to <u>info@nrc.govt.nz</u>. 2 A copy of these consents must be provided to every person who is to carry out the works authorised by these consents, prior to any work commencing. 3 The exercise of these consents must be undertaken in general accordance with the **attached** Peter Swan Limited drawings referenced as Northland Regional Council Plan Numbers 5259/1, 5259/2 and 5259/3. However, if there are any differences or apparent conflict between these drawings and any conditions of these consents, then the conditions of consent must prevail. 4 Sediment control measures must be constructed and maintained in accordance with the principles and practices contained within the Auckland Council document titled "2016/005: Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region" (GD05). Where there are inconsistencies between any part of GD05 and the conditions of these consents, then the conditions of these consents must prevail.

5 As part of the written notice required by Condition 1, the Consent Holder or its agent/contractor must submit an Erosion and Sediment Control Plan (ESCP) to the council for certification by the council's assigned monitoring officer. As a minimum, the ESCP must include the following:

- (a) The expected duration (timing and staging) of earthworks, and details of locations of disposal sites for unsuitable materials, and clean water diversions if required;
- (b) Details of all erosion and sediment controls including diagrams and/or plans, of a scale suitable for on-site reference, showing the locations of the erosion and silt control structures/measures;
- (c) The commencement and completion dates for the implementation of the proposed erosion and sediment controls;
- (d) Details of surface revegetation of disturbed sites and other surface covering measures to minimise erosion and sediment runoff following construction;
- (e) Measures to minimise sediment being deposited on public roads;
- (f) Measures to ensure dust discharge from the earthwork's activity does not create a nuisance on neighbouring properties;
- (g) Measures to prevent spillage of fuel, oil and similar contaminants;
- (h) Contingency containment and clean-up provisions in the event of accidental spillage of hazardous substances;
- (i) Means of ensuring contractor compliance with the ESCP;
- (j) The name and contact telephone number of the person responsible for monitoring and maintaining all erosion and sediment control measures;
- (k) Contingency provisions for the potential effects of large/high intensity rain storm events.
- 6 As a minimum, the erosion and sediment control measures must be constructed and maintained in accordance with the ESCP prepared in accordance with Condition 5. The Consent Holder may, in consultation with the council's assigned monitoring officer, amend the ESCP at any time and submit the amended plan to the council's assigned monitoring officer for review and certification. The most recent certified version of the ESCP must be used for compliance purposes.
- Prior to the commencement of earthworks on-site, a stabilised construction entrance to the site must be installed to minimise the tracking of spoil or debris onto off-site public road surfaces. All material tracked onto off-site surfaces as a result of the exercise of these consents must be removed as soon as possible, but at least daily. The stabilised construction entrance must be maintained throughout the duration of earthworks operations.
- 8 Erosion and sediment controls must be installed prior to the commencement of earthworks (other than those required for the erosion and sediment controls) within an area of works.
- 9 The installation of all erosion and sediment controls must be supervised by an appropriately qualified and experienced person. The Consent Holder must provide to the council's assigned monitoring officer certification from the appropriately qualified and experienced person who supervised the installation of the erosion and sediment controls that they have been installed in accordance with the requirements of GD05.
- 10 No works may be carried out between 1 May and 30 September in any year unless the prior written agreement of the council's Compliance Manager has been obtained.
- 11 Any request to undertake works between 1 May and 30 September in any year must be in writing and must be made at least two weeks prior to the proposed date that the works are required to be undertaken. This written request must include an amended ESCP for the works that has been prepared in accordance with Condition 5.

- 12 Drains and cut-offs constructed to divert stormwater must be capable of conveying stormwater during not less than the estimated 1 in 20 year rainfall event. All channels on grades greater than 2% must be protected to avoid erosion occurring.
- 13 All offsite stormwater must be directed away from earthworks areas and no drainage pathways must be constructed, or permitted to flow, over fill areas in a manner that creates erosion of the fill material.
- 14 No slash, soil, debris and detritus associated with the exercise of these consents must be placed in a position where it may be washed into any water body.
- 15 All bare areas of land and fill must be covered with aggregate, or topsoiled and established with a suitable grass/legume mixture to achieve an 80% groundcover within one month of the completion of earthworks. Temporary mulching or other suitable groundcover material must be applied to achieve total groundcover of any areas unable to achieve the above requirements.
- 16 The exercise of these consents must not give rise to any discharge of contaminants, including dust, which in the opinion of a monitoring officer of the council is noxious, dangerous, offensive or objectionable at or beyond the property boundary.
- 17 The exercise of these consents must not cause any of the following effects on the water quality of the Kerikeri River, as measured approximately 10 metres downstream of a discharge point into the river, when compared to a site upstream of all land disturbance activities during the same sampling event:
 - (a) The production of any conspicuous oil or grease films, scums or foams, floatable or suspended materials;
 - (b) A conspicuous change in colour or visual clarity;
 - (c) An emission of objectionable odour;
 - (d) An increase in suspended solids concentration greater than 100 grams per cubic metre.
- 18 These consents will not lapse until their expiry.
- 19 The Consent Holder must, on becoming aware of any discharge associated with the Consent Holder's operations that is not authorised by these consents:
 - (a) Immediately take such action, or execute such work as may be necessary, to stop and/or contain the discharge; and
 - (b) Immediately notify the council by telephone of the discharge; and
 - (c) Take all reasonable steps to remedy or mitigate any adverse effects on the environment resulting from the discharge; and
 - (d) Report to the council's Compliance Manager in writing within one week on the cause of the discharge and the steps taken, or being taken, to effectively control or prevent the discharge.

For telephone notification during the council's opening hours, the council's assigned monitoring officer for these consents must be contacted. If that person cannot be spoken to directly, or it is outside of the council's opening hours, then the Environmental Hotline must be contacted.

Advice Note: The Environmental Hotline is a 24 hour, seven day a week, service that is free to call on 0800 504 639.

- 20 The council may, in accordance with Section 128 of the Resource Management Act 1991, serve notice on the Consent Holder of its intention to review the conditions annually during the month of July for any one or more of the following purposes:
 - (a) To deal with any adverse effects on the environment that may arise from the exercise of these consents and which it is appropriate to deal with at a later stage; or
 - (b) To require the adoption of the best practicable option to remove or reduce any adverse effect on the environment.

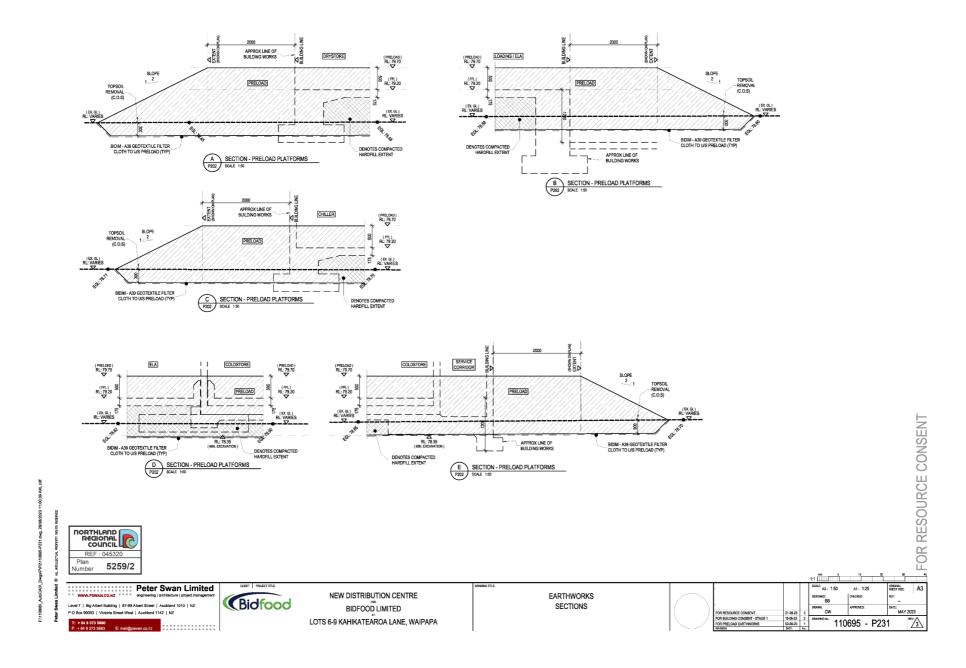
The Consent Holder must meet all reasonable costs of any such review.

EXPIRY DATE: 31 AUGUST 2028

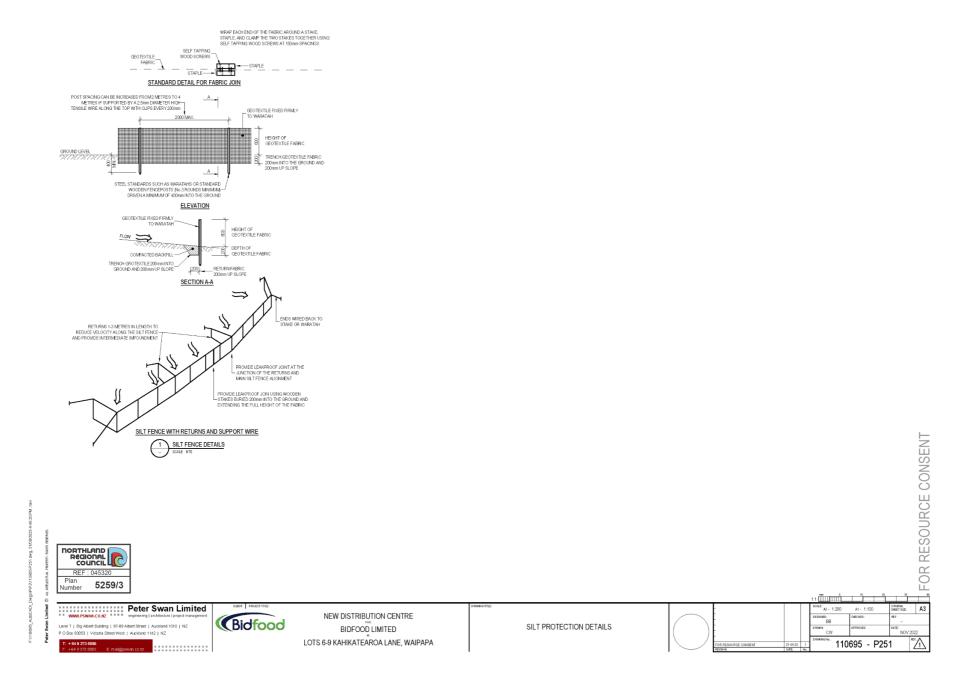
Advice Note:The Heritage New Zealand Pouhere Taonga Act 2014 makes it unlawful
for any person to destroy, damage or modify the whole or any part of an
archaeological site without the prior authority of Heritage New Zealand
Pouhere Taonga.

These consents are granted this Twenty Eighth day of September 2023 under delegated authority from the council by:

a


Paul Maxwell Coastal and Works Consents Manager

Note: The plans attached to this consent are reduced copies and therefore may not be to scale and may be difficult to read. In the event that compliance and/or enforcement action is to be based on compliance with the attached plans, it is important that the original plans, are sighted and used. Originals of the plans referred to are available for viewing at the council's Whangārei office.



1.

DISTRIBUTION CENTRE DEVELOPMENT

BIDFOOD LIMITED KAHIKATEROA LANE EXTN, WAIPAPA

FOR BUILDING CONSENT STAGE 1

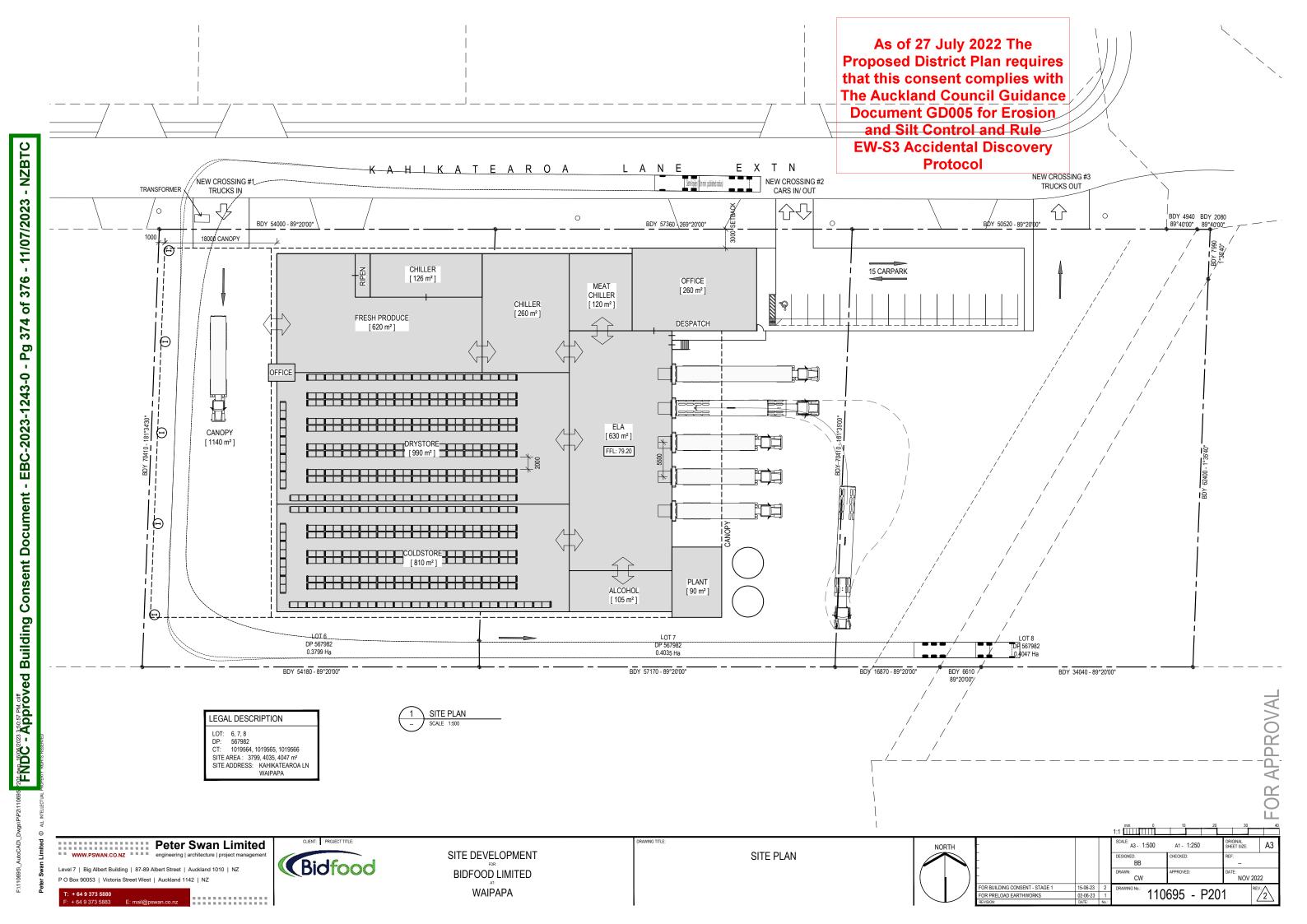
PROJECT No.: 110695

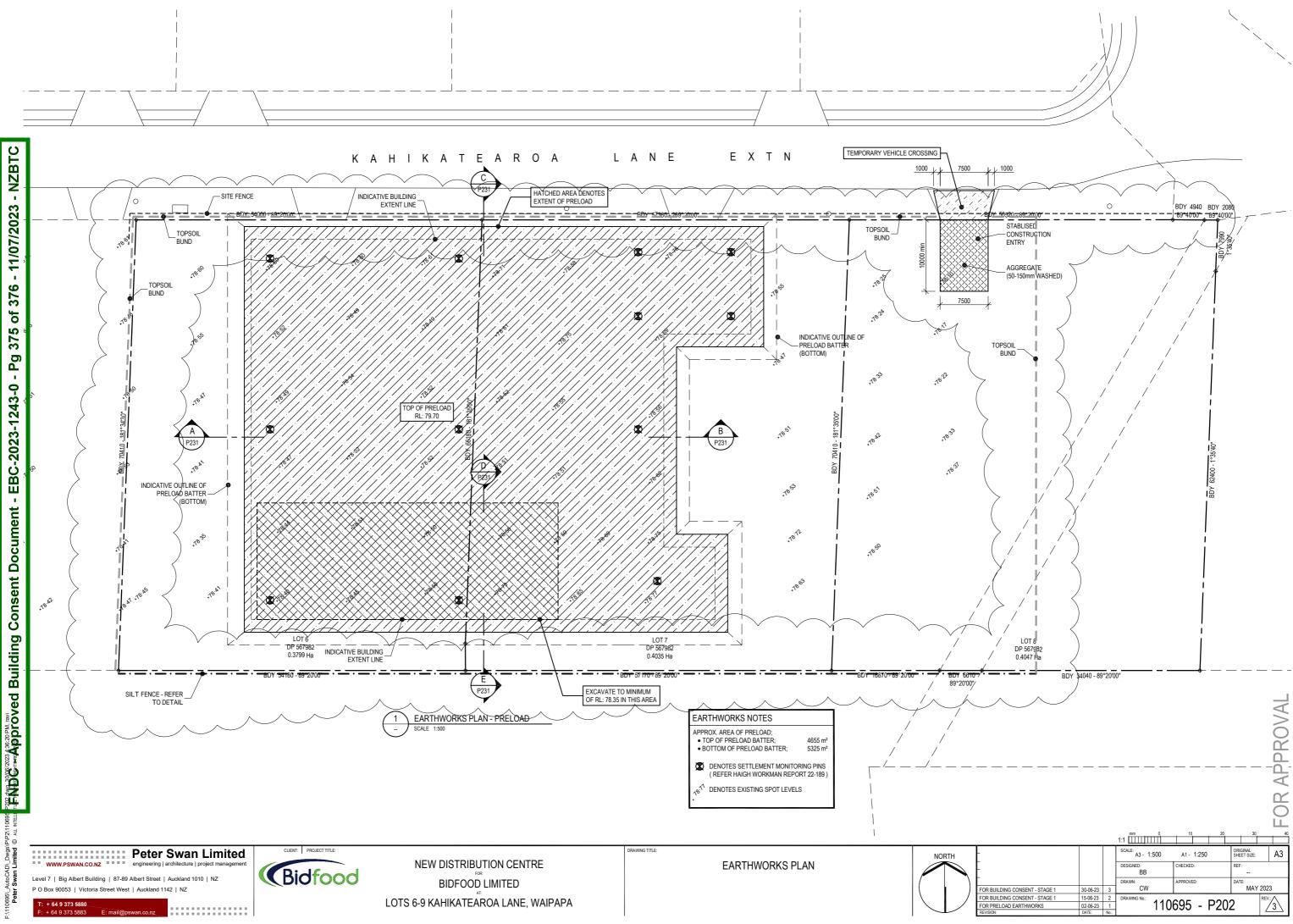
DRAWINGS PREPARED BY

11	11	ш	ш	11	11	11	11	11	ш	ш	11	11	11	1	ш	щ	ш	11	11	1	11	11	ш	ш	
щ	111	щ	щ	ш	11	11	ш	щ	111	ш	Ш	ш	11	11	щ	щ	Ш	11	11	11	111	щ	Щ	щ	11
111	ш	Ш	Ш	ш		N	٨v	٧V	V.F	PS	W	A١	1.0	0	.N	Ζ			11	ш	111	ш	111	Ш	111

Level 7, Albert Plaza, 87-89 Albert Street, AUCK, NZ P O Box 90053, Victoria Street West, AUCK 1144, NZ Peter Swan Limited engineering | architecture | project management

1/16 Bealey Avenue, CHCH, NZ P O Box 25332, Victoria Street, CHCH 8144, NZ


AUCK t+64 9 373 5880 f+64 9 373 5883 t +64 3 366 9849 f + 64 3 366 9923 mail@pswan.co.nz



DISTRIBUTION CENTRE DEVELOPMENT

SITE ADDRESS: KAHIKATEAROA LN WAIPAPA

F:11

TOPSOIL - REMOVAL (C.O.S) (EX.GL) RL: VARIES 6

1:1 10 20 30 40 1:1 10 20 30 40 1:1 10 20 30 40 IL1 10 20 30 40 IL1 IL1 10 20 30 40 IL1 IL1							FOR APPROVAL
ILDING CONSENT - STAGE 1 15:06:23 2 PRAWINE No.: PROVED: PATE MAY 2023 ILDING CONSENT - STAGE 1 15:06:23 2 PRAWINE No.: 110695 P231 REF: 2					10 20	30	40
BB DRAWN: APPROVED: DATE: MAY 2023 CW MAY 2023 ILDING CONSENT - STAGE 1 15-06-23 2 ELOAD EARTHWORKS 02-06-23 1				^{SCALE:} A3 - 1:50	A1 - 1:25		A3
CW MAY 2023 ILDING CONSENT - STAGE 1 15-06-23 2 BLOAD EARTHWORKS 02-06-23 1					CHECKED:	REF:	
ELOAD EARTHWORKS 02-06-23 1 $100695 - P231$ /2					APPROVED:		3
ELOAD EARTHWORKS 02-06-23 1 $100695 - P231$ /2	ILDING CONSENT - STAGE 1	15-06-23	2	DRAWING No.:		REV	.: \
	ELOAD EARTHWORKS	02-06-23	1	110	695 - P23	1 /	2
		DATE:	No.:	110	120	·	- \