

Office Use Only Application Number:

Application for resource consent or fast-track resource consent

(Or Associated Consent Pursuant to the Resource Management Act 1991 (RMA)) (If applying for a Resource Consent pursuant to Section 87AAC or 88 of the RMA, this form can be used to satisfy the requirements of Schedule 4). Prior to, and during, completion of this application form, please refer to Resource Consent Guidance Notes and Schedule of Fees and Charges — both available on the Council's web page.

1. Pre-Lodgement Meeting

Have you met with a council Resource Consent representative to discuss this application prior to lodgement? Yes No

2. Type of Consent being applied for	
(more than one circle can be ticked):	
C Land Use	Discharge
Fast Track Land Use*	Change of Consent Notice (s.221(3))
Subdivision	Extension of time (s.125)
Consent under National Environmenta (e.g. Assessing and Managing Contamina	
• Other (please specify) Retaining wall	

* The fast track is for simple land use consents and is restricted to consents with a controlled activity status.

3. Would you like to opt out of the Fast Track Process?

Yes No

4. Consultation

Have you consulted with lwi/Hapū? 🚫 Yes 🕜 No			
If yes, which groups have you consulted with?			
Who else have you consulted with?			

For any questions or information regarding iwi/hapū consultation, please contact Te Hono at Far North District

5. Applicant Details

Name/s:	Annette Wynyard	
Email:		
Phone number:		
Postal address: (or alternative method of service under section 352 of the act)		

6. Address for Correspondence

Name and address for service and correspondence (if using an Agent write their details here)

Name/s:	William Whetton
Email:	
Phone number:	
Postal address: (or alternative method of service under section 352 of the act)	

* All correspondence will be sent by email in the first instance. Please advise us if you would prefer an alternative means of communication.

7. Details of Property Owner/s and Occupier/s

Name and Address of the Owner/Occupiers of the land to which this application relates (where there are multiple owners or occupiers please list on a separate sheet if required)

Name/s:	Annette Wynyard		
Property Address/ Location:	1 harrys place, kawakawa		
		Postcode	0210

8. Application Site Details

Name/s:	Annette Wynyard			
Site Address/ Location:	1 harrys place, Kawakawa			
		Postcoo	de	0210
Legal Description:	LOT 7 DP 82909	Val Number:	00419-08907	

Location and/or property street address of the proposed activity:

Please remember to attach a copy of your Certificate of Title to the application, along with relevant consent notices and/or easements and encumbrances (search copy must be less than 6 months old)

Site visit requirements:

Is there a locked gate or security system restricting access by Council staff? () Yes () No

Is there a dog on the property? 🔵 Yes 🖌 No

Please provide details of any other entry restrictions that Council staff should be aware of, e.g. health and safety, caretaker's details. This is important to avoid a wasted trip and having to rearrange a second visit.

9. Description of the Proposal:

Please enter a brief description of the proposal here. Please refer to Chapter 4 of the District Plan, and Guidance Notes, for further details of information requirements.

removal of existing failing retaining wall and construction of new engineered retaining wall.

If this is an application for a Change or Cancellation of Consent Notice conditions (s.221(3)), please quote relevant existing Resource Consents and Consent Notice identifiers and provide details of the change(s), with reasons for requesting them.

10. Would you like to request Public Notification?

🔵 Yes 🕑 No

11. Other Consent required/being applied for under different legislation

(more than one circle can be ticked):

Building Consent Enter BC ref # here (if known)		
Regional Council Consent (ref # if known)	Ref # here (if known)	
ONational Environmental Standard consent	Consent here (if known)	
Other (please specify) Specify 'other' here		

12. National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health:

The site and proposal may be subject to the above NES. In order to determine whether regard needs to be had to the NES please answer the following:

Is the piece of land currently being used or has it historically ever been used for an activity or industry on the Hazardous Industries and Activities List (HAIL) **Yes No Don't know**

Is the proposed activity an activity covered by the NES? Please tick if any of the following apply to your proposal, as the NESCS may apply as a result. **Yes No O Don't know**

Subdividing land

Changing the use of a piece of land

- Oisturbing, removing or sampling soil
- Removing or replacing a fuel storage system

13. Assessment of Environmental Effects:

Every application for resource consent must be accompanied by an Assessment of Environmental Effects (AEE). This is a requirement of Schedule 4 of the Resource Management Act 1991 and an application can be rejected if an adequate AEE is not provided. The information in an AEE must be specified in sufficient detail to satisfy the purpose for which it is required. Your AEE may include additional information such as Written Approvals from adjoining property owners, or affected parties.

Your AEE is attached to this application 🕑 Yes

13. Draft Conditions:

Do you wish to see the draft conditions prior to the release of the resource consent decision? () Yes () No

If yes, do you agree to extend the processing timeframe pursuant to Section 37 of the Resource Management Act by 5 working days? **Yes No**

14. Billing Details:

This identifies the person or entity that will be responsible for paying any invoices or receiving any refunds associated with processing this resource consent. Please also refer to Council's Fees and Charges Schedule.

Name/s: (please write in full) Annette Wynyard

Email:

Phone number:

Postal address:

(or alternative method of service under section 352 of the act)

, uniono rijinja			
C ¹	and the second se		

Fees Information

An instalment fee for processing this application is payable at the time of lodgement and must accompany your application in order for it to be lodged. Please note that if the instalment fee is insufficient to cover the actual and reasonable costs of work undertaken to process the application you will be required to pay any additional costs. Invoiced amounts are payable by the 20th of the month following invoice date. You may also be required to make additional payments if your application requires notification.

Declaration concerning Payment of Fees

I/we understand that the Council may charge me/us for all costs actually and reasonably incurred in processing this application. Subject to my/our rights under Sections 357B and 358 of the RMA, to object to any costs, I/we undertake to pay all and future processing costs incurred by the Council. Without limiting the Far North District Council's legal rights if any steps (including the use of debt collection agencies) are necessary to recover unpaid processing costs I/we agree to pay all costs of recovering those processing costs. If this application is made on behalf of a trust (private or family), a society (incorporated or unincorporated) or a company in signing this application I/we are binding the trust, society or company to pay all the above costs and guaranteeing to pay all the above costs in my/our personal capacity.

WYNYARD

ANNETTE

Name: (please write in full)

Signature: (signature of bill payer

15. Important Information:

Note to applicant

You must include all information required by this form. The information must be specified in sufficient detail to satisfy the purpose for which it is required.

You may apply for 2 or more resource consents that are needed for the same activity on the same form. You must pay the charge payable to the consent authority for the resource consent application under the Resource Management Act 1991.

Fast-track application

Under the fast-track resource consent process, notice of the decision must be given within 10 working days after the date the application was first lodged with the authority, unless the applicant opts out of that process at the time of lodgement. A fast-track application may cease to be a fast-track

Privacy Information:

Once this application is lodged with the Council it becomes public information. Please advise Council if there is sensitive information in the proposal. The information you have provided on this form is required so that your application for consent pursuant to the Resource Management Act 1991 can be processed under that Act. The information will be stored on a public register and held by the Far North District Council. The details of your application may also be made available to the public on the Council's website, www.fndc.govt.nz. These details are collected to inform the general public and community groups about all consents which have been issued through the Far North District Council.

Date 04.09.24

15. Important information continued...

Declaration

The information I have supplied with this application is true and complete to the best of my knowledge.

Name: (please write in full)	William Whetton	
Signature:		Date 30-Aug-2024
	A signature is not required if the application is made by electronic means	

Checklist (please tick if information is provided)

- Payment (cheques payable to Far North District Council)
- A current Certificate of Title (Search Copy not more than 6 months old)
- 🔵 Details of your consultation with lwi and hapū
- Ocopies of any listed encumbrances, easements and/or consent notices relevant to the application
- Applicant / Agent / Property Owner / Bill Payer details provided
- location of property and description of proposal
- Assessment of Environmental Effects
- Written Approvals / correspondence from consulted parties
- Reports from technical experts (if required)
- Ocopies of other relevant consents associated with this application
- Location and Site plans (land use) AND/OR
- Location and Scheme Plan (subdivision)
- Elevations / Floor plans
- Topographical / contour plans

Please refer to Chapter 4 of the District Plan for details of the information that must be provided with an application. Please also refer to the RC Checklist available on the Council's website. This contains more helpful hints as to what information needs to be shown on plans.

Environmental Effects Assessment for Retaining Wall Replacement Project

Project Overview

The project at **1 Harrys Place, Kawakawa** involves the removal of an existing retaining wall and the construction of a new retaining wall with a maximum height of 2.5 meters at its highest point. The structure is not close to any waterways, reducing the potential for water-related environmental impacts.

Guidelines for Compliance

Whetton Contracting will adhere to the following guidelines to mitigate environmental impacts during the removal and construction of the retaining wall, while also striving to cause minimal disturbance to any neighbouring properties:

Potential Environmental Effects

- 1. Soil Erosion:
 - During Removal: The removal of the existing retaining wall may temporarily destabilize the soil, increasing the risk of soil erosion, particularly on sloped terrain. Although the structure is not near any waterways, erosion could still affect surrounding areas. Whetton Contracting will implement erosion control measures such as silt fences and sediment barriers to prevent soil displacement.
 - During Construction: Earthmoving activities could disturb the soil further, potentially leading to increased erosion. Disturbed areas will be stabilized as quickly as possible using methods such as re-vegetation or the application of geotextiles.
- 2. Vegetation Disruption:
 - Vegetation Removal: Not applicable
- 3. Air Quality:
 - Dust Generation: Dust control measures, such as watering down surfaces or using dust suppressants, will be implemented during construction to protect air quality. Whetton Contracting will also take steps to ensure that dust does not negatively impact neighbouring properties.
 - **Emissions from Machinery**: Whetton Contracting will ensure that all machinery used during construction is well-maintained to minimize emissions. Any impact on air quality is expected to be temporary and manageable with proper controls.

4. Noise Pollution:

 Noise generated during the removal and construction of the retaining wall will comply with local noise standards, which specify acceptable noise levels during certain hours of the day. Construction activities will be scheduled to avoid excessive noise during early mornings, evenings, and weekends. Whetton Contracting will make efforts to reduce noise disturbance to neighbouring properties.

Mitigation Measures

- 1. Erosion and Sediment Control:
 - Install silt fences, sediment traps, and other erosion control measures as needed.
 - Stabilize exposed soil surfaces promptly using native vegetation, mulch, or geotextiles.
- 2. Vegetation Management: Not applicable

3. Dust and Air Quality Control:

- Regularly water down exposed soil and construction areas to suppress dust, with a focus on minimizing impact on neighbouring properties.
- Use well-maintained machinery to minimize emissions and reduce environmental impact.

4. Noise Control:

- Limit construction activities to approved hours to minimize disturbance.
- Use noise-dampening techniques and barriers as necessary to comply with noise standards and reduce impact on neighbouring properties.

Whetton Contracting is committed to ensuring that the environmental effects of removing and replacing the retaining wall at **1 Harrys Place, Kawakawa** are managed effectively. By adhering to the guidelines outlined above, and by striving to minimize disturbance to any neighbouring properties, Whetton Contracting will ensure that the project proceeds sustainably and with minimal environmental disruption.

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD

Search Copy

R.W. Muir Registrar-General of Land

Identifier

NA39B/981

31 October 1977

Land Registration District North Auckland **Date Issued**

Prior References NA301/167

Estate Fee Simple Area 848 square metres more or less Lot 7 Deposited Plan 82909 Legal Description **Registered Owners** Annette Te Herenga Wynyard

Interests

10444793.2 Mortgage to ASB Bank Limited - 30.5.2016 at 1:37 pm

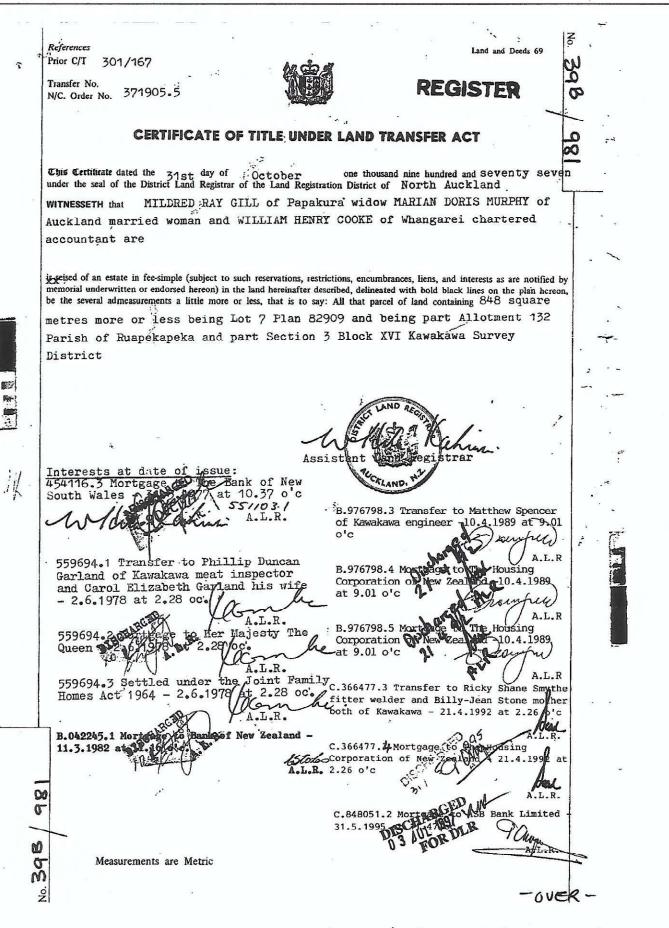
RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD

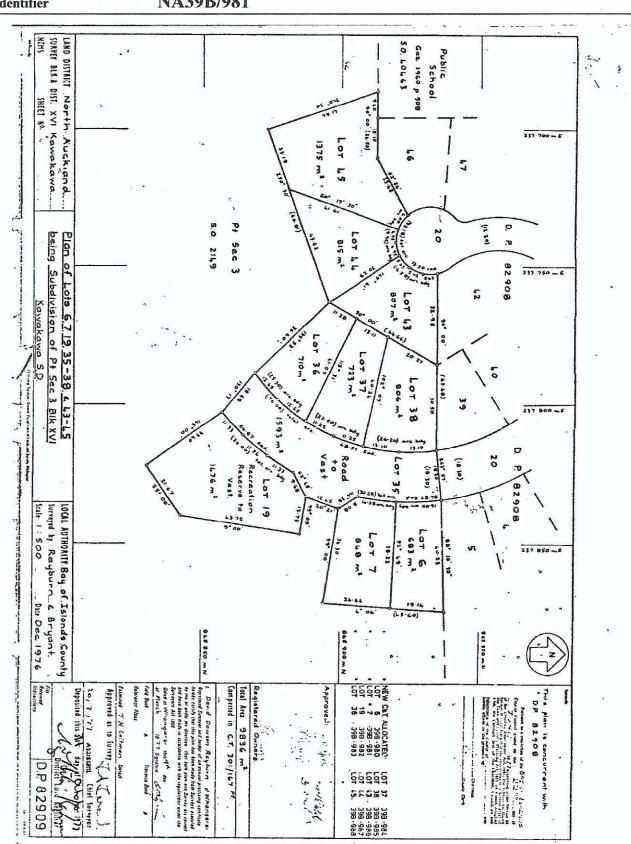
Historical Search Copy

R.W. Muir Registrar-General of Land

Constituted as a Record of Title pursuant to Sections 7 and 12 of the Land Transfer Act 2017 - 12 November 2018

Identifier	NA39B/981		
Land Registration District	North Auckland		
Date Issued	31 October 1977		


Prior References NA301/167


Estate	Fee Simple
Area	848 square metres more or less
Legal Description	Lot 7 Deposited Plan 82909
Original Registered	Owners
Annette Te Herenga	Wynyard

Interests

D322184.2 Mortgage to The Home Mortgage Company Limited - 20.10.1998 at 2.19 pm 6504172.1 Mortgage to Kiwibank Limited - 21.7.2005 at 9:00 am 6530696.1 Discharge of Mortgage D322184.2 - 1.9.2005 at 9:01 am 8436218.1 Discharge of Mortgage 6504172.1 - 12.3.2010 at 11:11 am 8436218.2 Mortgage to Mortgage Holding Trust Company Limited - 12.3.2010 at 11:11 am 10444793.1 Discharge of Mortgage 8436218.2 - 30.5.2016 at 1:37 pm 10444793.2 Mortgage to ASB Bank Limited - 30.5.2016 at 1:37 pm Identifier

NA39B/981

NA39B/981

Identifier

Identifier

7

NA39B/981

39B/981

D.165987.2 Transfer to Glyn David Rees and Loraine Margaret Rees 3.7.1997 at 10.55

B. Whenuarog forDLR

TOTDE

D322184.1 Transfer to Annette Te Herenga Wynyard

D322184.2 Mortgage to Housing Corporation of New Zealand

All 20.10.1998 at 2.19

for DLR

D523726.1 Transfer of Mortgage D322184.2 to The Home Mortgage Company Limited 14.7.2000 at 11.38

Job Ref: 24 077

24 May 2024

Annette Wynyard

RE: GEOTECHNICAL ASSESSMENT AND RETAINING WALL DESIGN AT 1 HARRYS PLACE, KAWAKAWA

1. INTRODUCTION

Haigh Workman Ltd (Haigh Workman) has been commissioned by Annette Wynyard (the client) to undertake a geotechnical investigation and carry out retaining wall design to replace the existing dilapidated concrete block retaining walls adjacent to the driveway /parking area at 1 Harrys Place, Kawakawa. The purpose of the investigation was to assess subsoil conditions and design the replacement timber pole retaining walls.

The scope of this report encompasses the geotechnical suitability in the context of the proposed development as defined in the Short Form Agreement dated 5th April 2024.

2. PROPOSED DEVELOPMENT

The subject site comprises an existing dwelling with a concrete masonry block wall along the southern boundary, supporting fill for the driveway / carpark. This wall has a maximum height of 2.5 m at the western end and has overturned by approximately 3°. There is also a small block wall on the opposite side of the driveway (to east of driveway), approximately 0.7 m high that is dilapidated is proposed to be replaced. (shown on drawing G02)

Another concrete masonry block wall runs along the western boundary (along Gills Drive boundary) which supports the lawn for the subject site. This wall has also overturned however, is not included in the scope of this report.

Based on discussions with our client the proposal is to replace the 2 concrete block walls along the southern boundary with new timber pole retaining walls, denoted RW01 and RW02 on the attached plans. (shown on drawing G03)

This report includes the design of timber pole retaining walls supporting a maximum cut height of 2.5 m for RW01 and maximum 0.7 m for RW02. Retaining wall RW01 been designed for driveway surcharge and impact loading from vehicles.

No topographical survey has been carried out for the site and existing ground levels are based on LiDAR from LINZ data service. As such, all proposed levels, retained heights and wall alignments are considered approximate only and must be checked onsite during construction.

Figure 1: Aerial showing subject site (from Google Earth)

3. SITE PHOTOGRAPHS

4. GEOLOGY

The Institute of Geological & Nuclear Sciences, Map 2, 1:250,000 Scale, 1996: "Geology of the Whangarei Area" shows the subject site to be underlain by Waipapa Group (TJw). The soils of the Waipapa Group comprise massive to thin bedded, lithic volcaniclastic sandstone and argillite of Permian to Jurassic age.

5. GROUND CONDITIONS

Three hand auger boreholes were drilled along the retaining wall alignments to assess the underlying subsoils conditions. Detailed descriptions of the subsoils encountered are given on the attached borehole logs however, a summary of the ground conditions is given in the table below:

Borehole Number	Topsoil (mbgl)	Non-certified Fill (mbgl)	Residual Soils (mbgl)	Groundwater Observations
BH01	0.0 to 0.1	NE	0.1 to >3.0	Groundwater not
BH02	0.0 to 0.2	NE	0.2 to >3.0	Encountered.
BH03	NE	0.0 to 0.4	0.4 to >2.0	Moist throughout.

Table 1: Summary of Borehole Results

Note: Depths measured from existing ground level. NE = Not Encountered

Groundwater was not encountered in any of the boreholes. The investigation was carried out following a dry season and may be higher during wetter winter conditions.

DESIGN METHODOLOGY

Design has been undertaken using retaining wall analysis software WALLAP, version 6.06 using moment equilibrium methods and the subgrade reaction model. A factor of safety of 1.5 is recommended for stability for static conditions, e.g., toe-kickout and overturning, and soil/shaft interface factors adopt B1/VM4 values for a timber pole.

Failure modes assessed during the design phase include:

- Kick-out.
- Yielding of structural elements.

For structural design of earth retaining structures, the design horizontal ground acceleration to be used in computing seismic inertia forces is as follows (New Zealand Bridge Manual – SP/M/022):

$$C_o g = C_h(T_o) Z R_u g$$

- C_h(T₀) = 1.33 (Class C)
- Z = 0.06 (Paihia/Russell)
- Ru = 1.0 (Importance Level 2, 50-year design life APE 1/500)

In accordance with Bridge Manual, the Zru shall not be taken as less than 0.13. Adopting the recommendations within Module 6 - Earthquake Resistant Retaining Wall Design, a wall displacement factor (W_d) of 0.3 can applied for walls facilitating access and services to buildings.

Adopting an a_{max} of 0.19 g (Module 1, Paihia/Russell), $C_og = a_{max} \times W_d = 0.06$.

On this basis, a $C_{o}g = 0.08$ has been adopted.

Geotechnical design parameters presented in Table 2 below have been adopted in design. The design criteria for the timber pole retaining walls are as follows:

Wall I.D.	Maximum Retained Height (m)	Surcharge (kPa)	Backslope (degrees)
RW01	2.5 m	10 (driveway)	N/A
RW02	0.7 m	2.5 (lawn mowing etc.)	N/A

*Retaining wall RW01 is at the edge of the driveway therefore has been designed with a crash barrier for light vehicle traffic (Type F) in accordance with AS/NZS 1170.1, i.e. a 30 kN load at 0.5 m above the road level, distributed over a 1.5m length of the wall.

Table 2: Geotechnical Design Parameters

Soil Unit	Bulk Unit Weight, γ (kN/m³)	Effective Cohesion, c' (kPa)	Effective Friction Angle, φ' (degrees)	Young's Modulus, E (MPa)
Retained Fill	17	3*	26	10
Stiff to Very Stiff Residual Soils	18	5	30	25

*Cohesion is ignored over the upper 1.5 m below the top of the wall.

**For the crash/impact loading scenario, undrained conditions have been used for the soils on the passive side of the wall, adopting an Su of 75 kPa.

DESIGN SUMMARY

A summary of the design is presented in Table 3. Design calculations and detailed drawings are attached.

Wall Properties		RW01		RW02
Maximum Height (H)	1.5 m	2.0 m	2.5 m	1.0 m
Pole Spacing (c/c)	1.0 m	1.0 m	1.0 m	1.2 m
Pole type	275 mm SED (High Density)	300 mm SED (High Density)	325 mm SED (High Density)	150 mm SED (High Density)
Embedment Length (L)	2.2 m	2.8 m	3.3	1.8 m
Total Pile Length (H + L)	3.7 m	4.8 m	5.8 m	2.5 m
Encasement (B)	500 mm bored pile, encased in 20 MPa concrete	500 mm bored pile, encased in 20 MPa concrete	500 mm bored pile, encased in 20 MPa concrete	350 mm bored pile, encased in 20 MPa concrete
Timber lagging rails	150 x 50 timber, H5 tr below 2.1 m the to	eated. Double rails be op of wall. (refer to de	•	150 x 50 timber, H5 treated.

Table 3: Retaining Wall Design Summary

RW01 allows for an extra 300 mm retained height (i.e. out of ground height + 300mm) due to the presence of a shallow water main adjacent to the wall. This is also an allowance for any existing footings that will be removed from the existing concrete block wall.

Seepage drainage must be installed behind the wall, with the drainage pipe outlet directed downslope away from the building. Refer to drawings in Appendix A attached for full details and specifications.

SAFETY IN DESIGN

A safety in design register has been prepared and should be updated during construction when required.

Issue	Risk	Proposed mitigation measure
Excavations	Collapse of material and potential to strike people	All earthworks to be staged where possible and cuts to remain open for the smallest possible duration. No one to work immediately adjacent to the cut or during poor weather conditions.
Open auger holes	Falling from height	No holes to remain open overnight. No one allowed to walk around the construction site, other than those who understand site hazards. Holes should be backfilled with concrete as soon as possible.
Lifting timber poles and putting into ground	Falling from height (heavy)	Lifting gear (straps and chains) to be in good condition and certified if required.
Groundwater	If encountered, groundwater will make constructability difficult	We expect holes to remain free of groundwater in the short term.

Table 4: Safety in design risk register

EXISTING SERVICES

Far North Maps indicates that a public runs parallel to the road, approximately 1.2 m away from the proposed walls as shown on the attached site plan (indicative location only). The effective retained heights allow for this in the design.

However, it is our recommendation that a survey be carried out for this pipe to ascertain the exact alignment and depth before any excavations or retaining wall pile holes are drilled.

6. LIMITATIONS

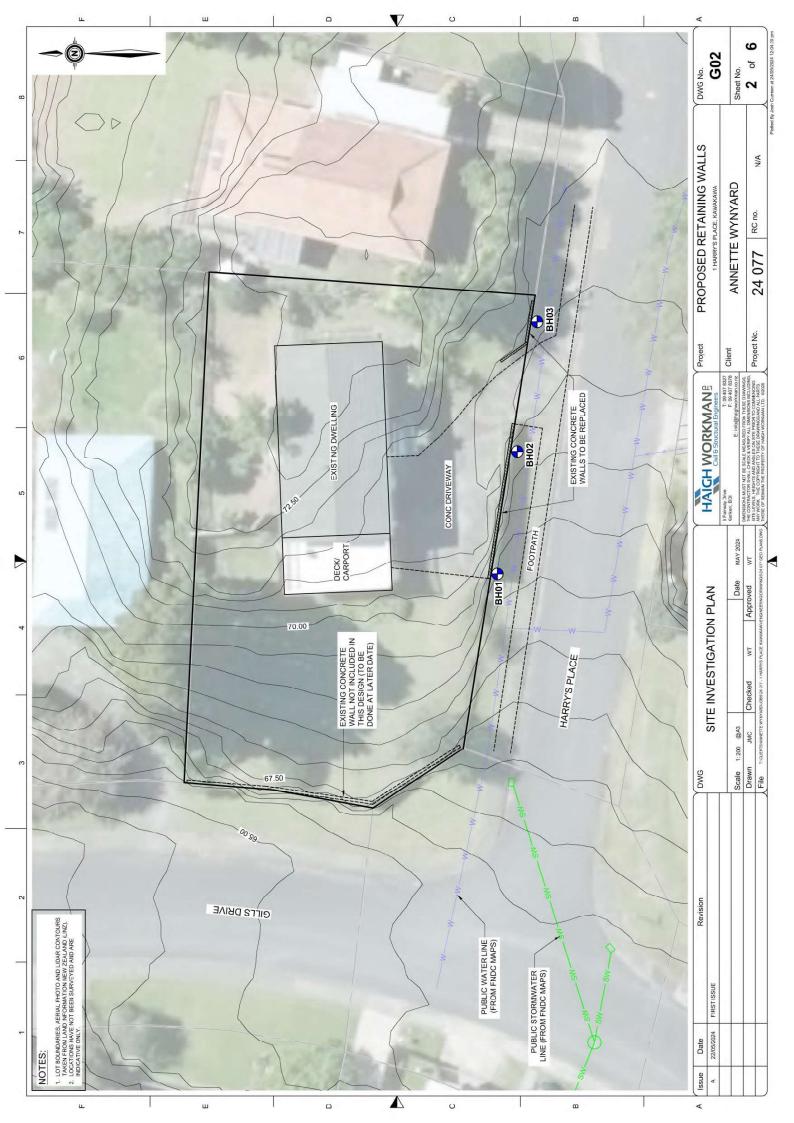
This letter report has been prepared for the use of Annette Wynyard with respect to the particular brief outlined to us. This letter report is to be used by our Client and their Consultants only. The information and opinions contained within this report shall not be used in other context for any other purpose without prior review and agreement by Haigh Workman Ltd.

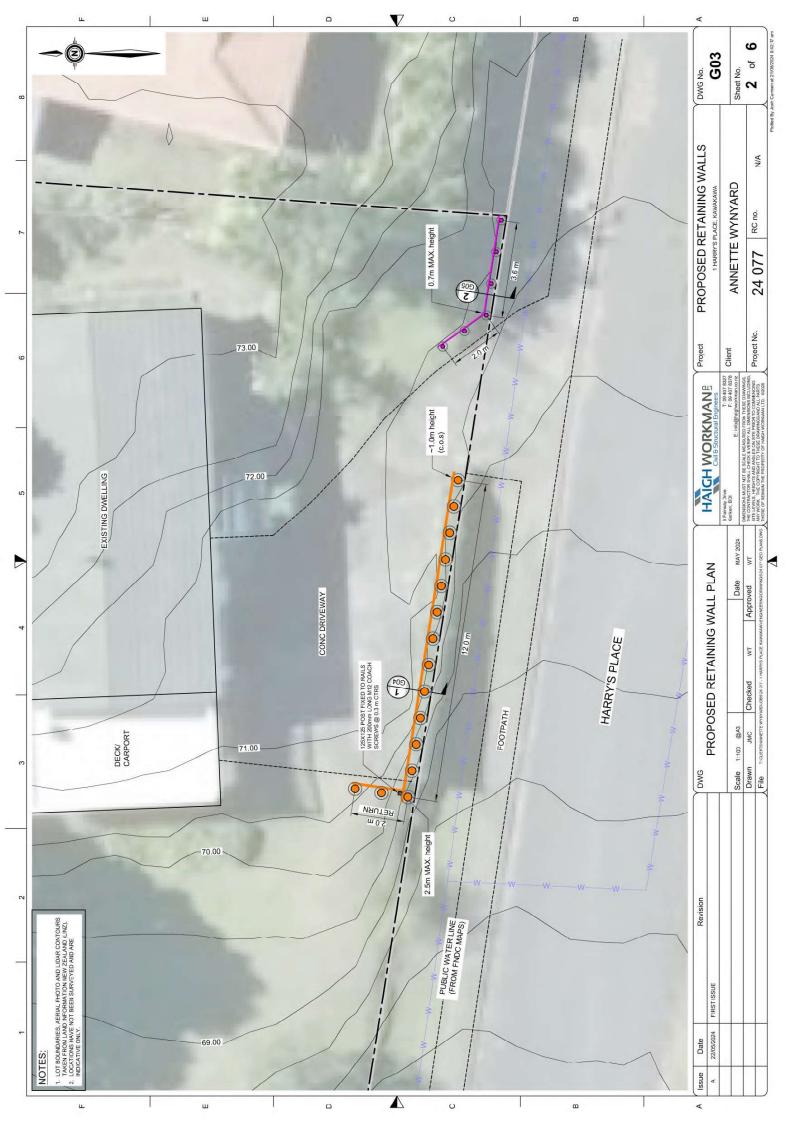
The retaining wall design and recommendations contained in this report are depended on the satisfactory remediation (i.e. retaining) of the slip along Old Church Road to the south.

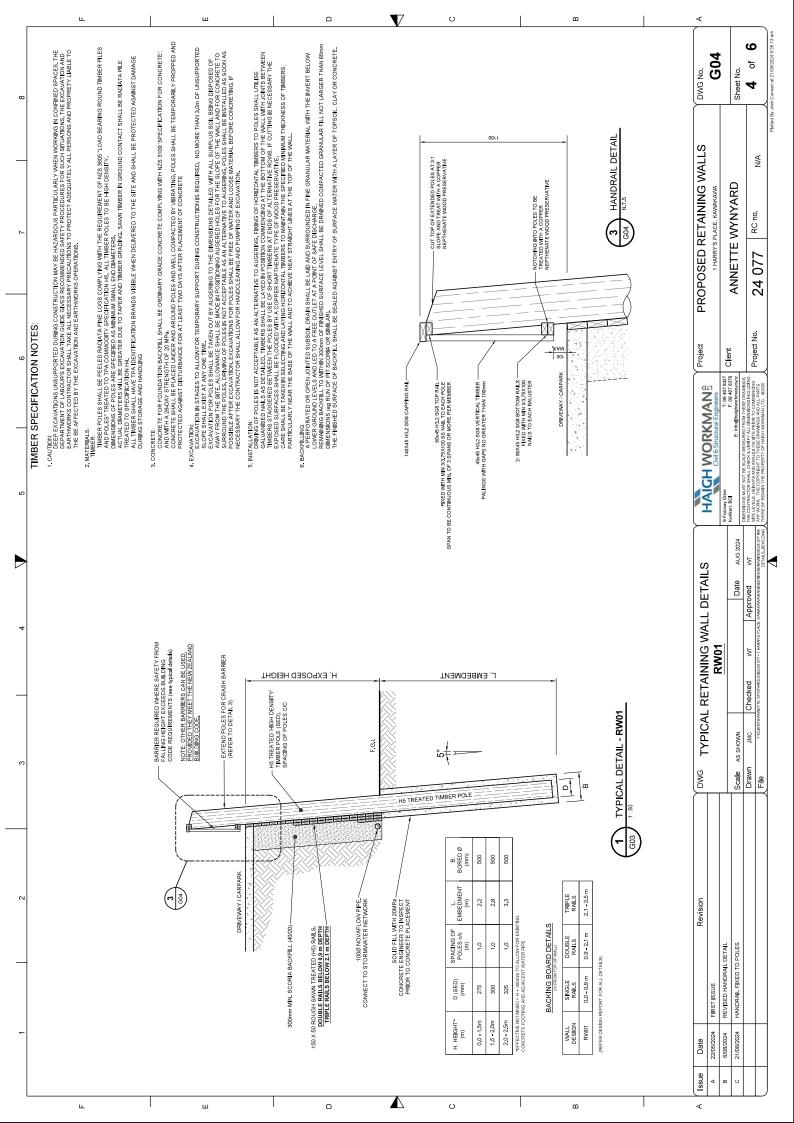
Prepared By

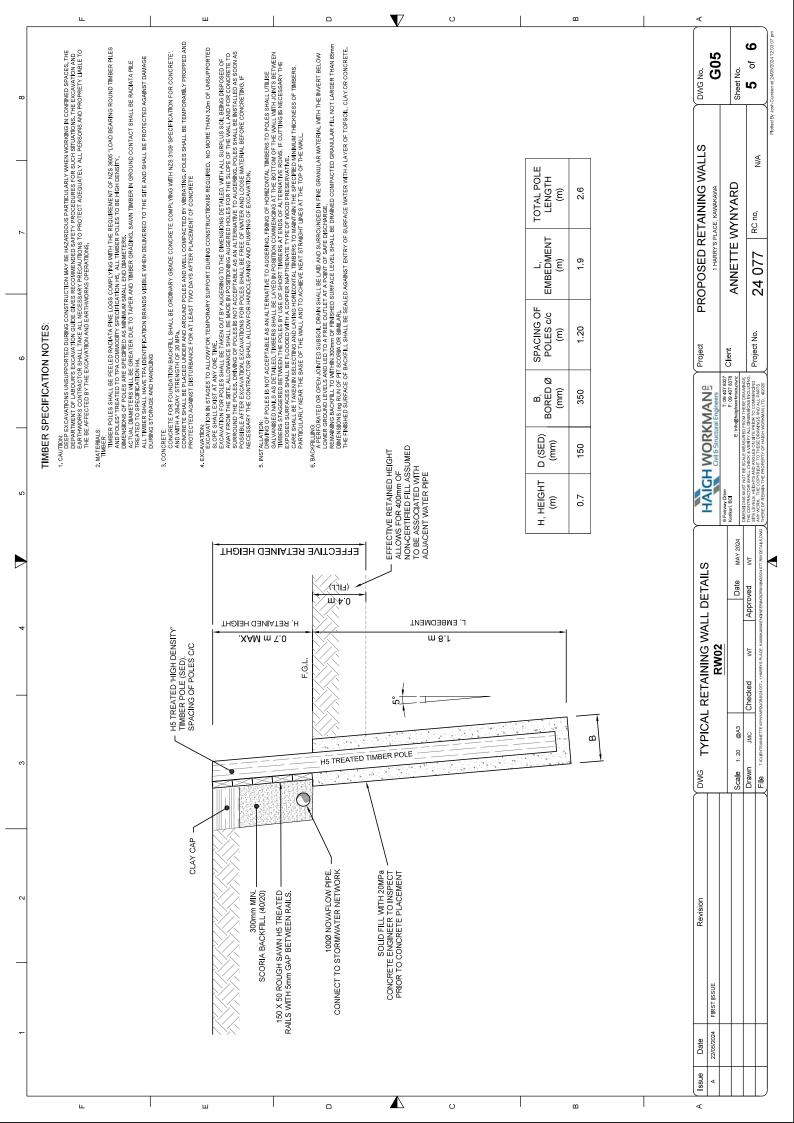
osh Curreen

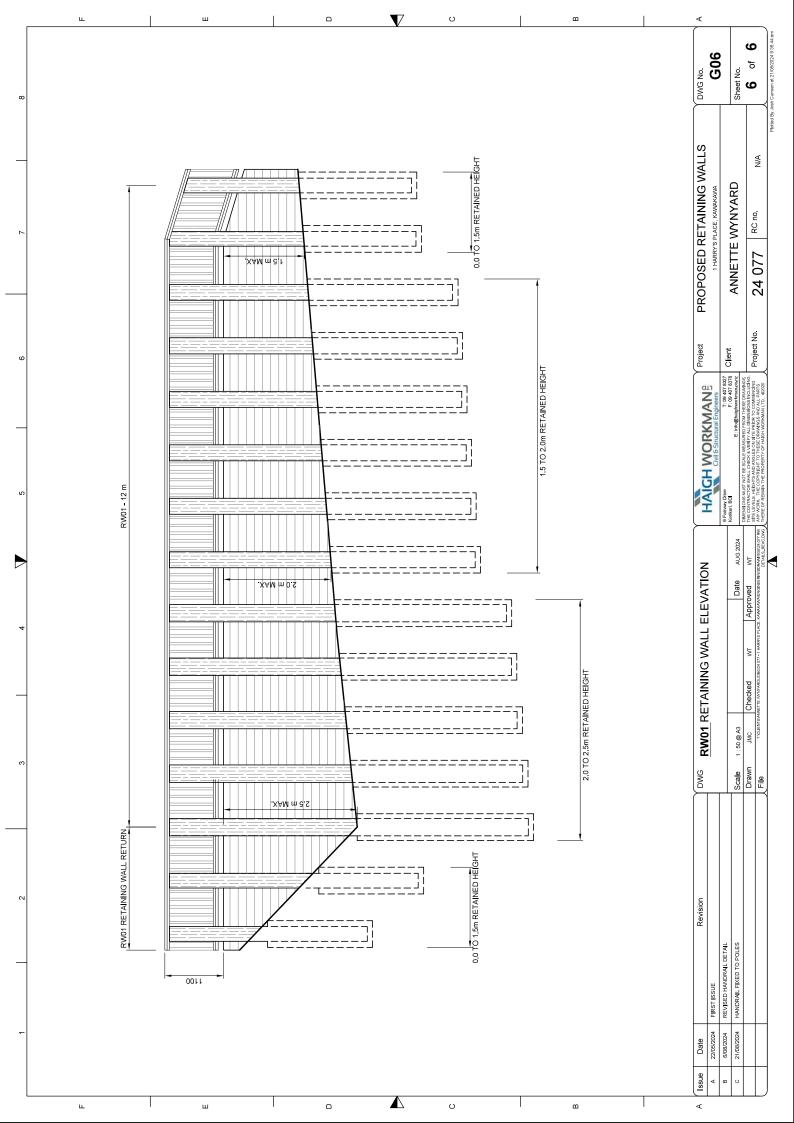
Geotechnical Engineer MEngNZ


Reviewed By orburn


Senior Geotechnical Engineer CPEng, CMEngNZ




APPENDIX A – Drawings



APPENDIX B – Investigation Logs

6 Fairway Drive Kerikeri, 0230 New Zealand	HA	GH WO Civil & Str	Rk				Neer	E			Fax <u>www.ha</u> info@h	aighwo		.co.nz
orehole Log		Hole Location: Refe				gint				JC	B No		24	
CLIENT: Date Started: Date Completed:	Annette Wynyard 02/05/2024 02/05/2024	SITE: DRILLING METHOD: HOLE DIAMETER (mm)	1 Harr Hand J 50mm	Auge		Kawa	ikawa	LOGG	ED BY KED B		JMC WT			
В	Soil Descriptio		Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Rem	/ane S ouldec Streng	l Van	e Shear		a Pene Iows/1	
Clayey SILT; orange I plasticity. Occasional f [WAIPAPA GROUP] At 1.2m: Becoming lig At 1.8m: 50mm band o	y SILT, grey brown. Moist brown streaked light grey fine well weathered clasts ht grey streaked orange b of fine gravel (limonite sta	Very stiff, moist, low	0.0	0		Groundwater Not Encountered	2	4	66	 146 146 143 	201 + 201 + 201 +			
En	brown, Very stiff, moist, lo d of hole at 3.0m (Targe		3.0 3.5 4.0 4.5				2		69	1	69			
Hand Held She	CLAY SILT			GR/	AVEL		F	ILL	R	emould	d shear va led shear v netrometer	ane rea		•

T:\Clients\Annette Wynyard\Jobs\24 077 - 1 Harrys Place, Kawakawa\Engineering\Site investigation\BH logs

PO Box 89, 0245 6 Fairway Drive Kerikeri, 0230 New Zealand	HA	GH WO Civil & Str	RI		M al En	Agine	Neers	E		F <u>V</u>	ww.ha	09 407 <u>ghworl</u>	8378 kman	<u>.co.nz</u> 1.co.nz
orehole Log	- BH02	Hole Location: Refe	r to Site	e Pla	an					JOE	8 No	. :	24	077
CLIENT: Date Started: Date Completed:	Annette Wynyard 02/05/2024 02/05/2024	SITE: DRILLING METHOD: HOLE DIAMETER (mm)	1 Haı Hand 50mr	Au	Place, ger	Kawa		LOGO	GED BY KED B		P VT			
E	Soil Description Based on NZGS Logging Guidelin		Depth (m)	Geology	Graphic Log	Water Level	Sensitivity	Ren	oulded	hear an I Vane S ths (kPa	hear			etrome 00mm)
TOPSOIL/FILL; SILT, moist, low plasticity, n	, minor clay, brownish grey ninor rootlets.	mottled orange. Firm,	0.0	TS	き を を を							0 5	10	15 2
	t whitish grey streaked ora	nge. Very stiff, moist, low	Ē			untered	4							
stiff, moist, low plastic	•	ey streaked orange. Very	0.5			Groundwater Not Encountered			34	141				
At 0.8m: gravel absen	nt.		_			vater	3			15				
			1.0			vpuno			59	15	2			
			F	Ч		5								
t 1.5m: trace fine gra	avel, dark orange.		1.5	WAIPAPA GROUP				UTP						
ILT; minor clay, trac	e fine to medium gravel (li	monite stained), orange	F	IPAP/										
	ry stiff, moist, low plasticity itish grey streaked light or		F	X			3				190			
lasticity.			2.0						72		150		_	_
ILT; minor clay, trac noist, low plasticity.	e fine gravel, orange strea	ked light grey. Very stiff,	Ē				3			15	.5			
ILT; some clay, light lasticity.	t orange streaked whitish g	grey. Very stiff, moist, low	2.5				-		59				_	_
,	ght whitish grey streaked lig	ght orange.												
En	nd of hole at 3.0m (Target	depth)	3.0		******			UTP						
			3.5 											
EGEND		SAND	4.5	GF	RAVEL		F			prrected sl			-	
Hand Held Sh	o penetrate. T.S. = Topsoil. ear Vane S/N: 2278 ometer testing not underta					<u>.x.đ</u>			So	cala Penet	rometer			٠

T:\Clients\Annette Wynyard\Jobs\24 077 - 1 Harrys Place, Kawakawa\Engineering\Site investigation\BH logs

PO Box 89, 0245 Phone 09 407 8327 HAIGH WORKMAN Civil & Structural Engineers 6 Fairway Drive Fax 09 407 8378 Kerikeri, 0230 www.haighworkman.co.nz New Zealand info@haighworkman.co.nz Borehole Log - BH03 Hole Location: Refer to Site Plan JOB No. 24 077 CLIENT: Annette Wynyard SITE: 1 Harry's Place, Kawakawa JP 02/05/2024 **DRILLING METHOD:** Hand Auger LOGGED BY: Date Started: 02/05/2024 WT Date Completed: HOLE DIAMETER (mm) CHECKED BY: 50mm Ē Geology Graphic Sensitivity Vane Shear and Water Level Soil Description Scala Penetrometer Depth (Log **Remoulded Vane Shear** (blows/100mm) Based on NZGS Logging Guidelines 2005 Strengths (kPa) SILT; minor clay and fine gravel, dark brown and brown mixed orange and 10 15 20 0.0 pink. Stiff, moist, low plasticity. [UN-CERTIFIED FILL] Groundwater Not Encountered Clayey SILT; orange and light grey streaked pinkish red. Very stiff, moist, 6 low plasticity. [WAIPAPA GROUP] 155 0.5 SILT; some clay, light grey streaked orange. Very stiff, moist, low plasticity GROUP 241+ Clayey SILT; light whitish grey streaked orange. Very stiff, moist, moderate 1.0 plasticity. VAIPAPA 6 196 At 1.5m: Becoming light orange streaked light whitish grey. 1.5 SILT; some clay, light whitish grey streaked light orange. Very stiff, moist, low plasticity. 3 172 End of hole at 2.0m (Target depth) 2.0 2.5 3.0 3.5 4.0 4.5 LEGEND Corrected shear vane reading TOPSOIL CLAY SILT SAND GRAVEL FILL Remoulded shear vane reading Scala Penetrometer ٠ Note: UTP = Unable to penetrate. T.S. = Topsoil. Hand Held Shear Vane S/N: 2278 Scala penetrometer testing not undertaken.

T:\Clients\Annette Wynyard\Jobs\24 077 - 1 Harrys Place, Kawakawa\Engineering\Site investigation\BH logs

APPENDIX C – Design Calculations

Project Name: 1 Harry's Place			24 077 Doc No.:
Subject:	By: J. Curreen	Date:	May 2024
RW01 - 1.5m	Verified By: W. Thorburn	Date:	May 2024

Material Properties for Timber Pole

E =		8.70	GPa		(Young Mo	odulus)	[MGS8,	NZS3603 AI	nende	ment 4, Ta	able 2.3]
	8.70E					,					-
ρ= S=			kg/m ³		(Density)		niloc)		•	275	
S =		1	m c/c		(Spacing b	etween	piles)		0.	275 m	
A =	0	.059	m²		(Sectional	Area)			_		
I =	2.80738				Area Mon		nertia)		F	\neg	
					per pile						
EA =					l/m²][m²]/[n						
EI =					[kN/m ²][m ⁴]						
w =	U	.262	kN/m/i	m = [[kg/m ³][m/s	-][m-]/[n	n]				
I	2.807	E-04	m ⁴ /m		per unit ler	nath of v	vall				
El				m =	[kN/m ²][m ⁴	-					
					per unit ler		vall				
Statia Land	ing Choole										
Static Loadi	ing check		(kNm/i	m)	(kN/m						
	(m)		BM	· · /	SF	c/c (m)					
∕lax Height	() -	1.8		10.6	10.8		1				
and factor -	(1.5m out c _	of gro	und)	1.5							
Load factor = DESIGN	-			1.5							
(kNm)	(kN)					pole siz	ze (mm)	Embedmer	Total le	ength (m)	
BM	SF		fos		disp (mm)			(m)			
15.9		16.2		1.5	14		275	1.9		3.7	
pole design ((maximum)										
(kNm)	(kN)										
BM	SF										
30		64									
ок –	OK										
OK											
		<u>k</u>	(kNm/	m)	(kN/m						
		<u>k</u>	(kNm/i BM	m)	(kN/m SF	c/c (m)					
Seismic Loa	ading Checl (m)	1.8	BM	m) 13.9			1				
<u>Seismic Loa</u> Max Height	ading Chec (m) (1.5m out c	1.8	BM	13.9	SF						
<mark>Seismic Loa</mark> Max Height <i>Load factor</i> =	ading Chec (m) (1.5m out c	1.8	BM		SF						
<u>Seismic Loa</u> Max Height <i>Load factor</i> = DESIGN	ading Chec (m) (1.5m out c	1.8	BM	13.9	SF		1		Total le	ength (m)	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM	ading Chec (m) (1.5m out c = (kN) SF	1.8 of gro	BM fos	13.9 1	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m)	Total le		
<u>Seismic Loa</u> Max Height Load factor = DESIGN (kNm)	ading Chec (m) (1.5m out c = (kN) SF	1.8 of gro	BM fos	13.9	SF 14.2	pole siz	1	Embedmer (m)	Total k	ength (m) 3.7	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9	(m) (1.5m out c (kN) SF	1.8 of gro	BM fos	13.9 1	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m)	Total le		
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design (ading Check (m) (1.5m out o (kN) SF (maximum)	1.8 of gro	BM fos	13.9 1	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m)	Total k		
Seismic Los Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm)	(m) (1.5m out c (kN) SF	1.8 of gro	BM fos	13.9 1	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m)	Total k		
Seismic Los Max Height Load factor = DESIGN (kNm) BM 13.9 Dole design ((kNm) BM 30	ading Chec (m) (1.5m out c (kN) SF (maximum) (kN) SF	1.8 of gro	BM fos	13.9 1	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m)	Total le		
Seismic Los Max Height Load factor = DESIGN (kNm) BM 13.9 Dole design ((kNm) BM 30	ading Checl (m) (1.5m out c = (kN) SF (maximum) (kN)	1.8 of gro 14.2	BM fos	13.9 1	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m)	Total le		
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK	ading Check (m) (1.5m out of (kN) SF (maximum) (kN) SF OK	1.8 of gro 14.2 64	BM und) fos	13.9 1 1.25	SF 14.2 disp (mm)	pole siz	1 ze (mm) 275	Embedmer (m) 1.9	Total k		
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK	ading Check (m) (1.5m out of (kN) SF (maximum) (kN) SF OK	1.8 of gro 14.2 64	BM und) fos	13.9 1 1.25	SF 14.2 disp (mm)	pole siz	1 ze (mm)	Embedmer (m) 1.9	Total k		
Seismic Los Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK	ading Check (m) (1.5m out of (kN) SF (maximum) (kN) SF OK	1.8 of gro 14.2 64 (cras	fos sh barr (kNm/i BM	13.9 1 1.25 <u>rier)</u> m)	SF 14.2 disp (mm) 19 (kN/m SF	pole siz	1 ze (mm) 275 <u>CAL CAS</u>	Embedmer (m) 1.9	Total k		
Seismic Los Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK	ading Checl (m) (1.5m out c (kN) SF (maximum) (kN) SF OK OK	1.8 of gro 14.2 64	fos sh barr (kNm/i BM	13.9 1 1.25	SF 14.2 disp (mm) 19 (kN/m	pole siz	1 ze (mm) 275 CAL CAS	Embedmer (m) 1.9	Total k		
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height	ading Check (m) (1.5m out c (kN) SF (maximum) (kN) SF OK OK ding Check	1.8 of gro 14.2 64 (cras	fos sh barr (kNm/i BM	13.9 1 1.25 <u>rier)</u> m)	SF 14.2 disp (mm) 19 (kN/m SF	pole siz	1 ze (mm) 275 <u>CAL CAS</u>	Embedmer (m) 1.9	Total k		
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor =	ading Check (m) (1.5m out c (kN) SF (maximum) (kN) SF OK OK ding Check	1.8 of gro 14.2 64 (cras	fos sh barr (kNm/i BM	13.9 1 1.25 <u>rier)</u> m)	SF 14.2 disp (mm) 19 (kN/m SF	pole siz	1 ze (mm) 275 <u>CAL CAS</u>	Embedmer (m) 1.9	Total k		
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor = DESIGN (kNm)	ading Chec (m) (1.5m out c (kN) SF (kN) SF OK OK ding Check (m) = (kN)	1.8 of gro 14.2 64 (cras	BM (und) fos sh barr (kNm/, BM	13.9 1 1.25 <u>rier)</u> m)	SF 14.2 disp (mm) 19 (kN/m SF 42.2	pole siz CRITIC c/c (m)	1 ze (mm) 275 <u>CAL CAS</u> 1	Embedmer (m) 1.9		3.7	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor = DESIGN (kNm) BM	ading Chec (m) (1.5m out c (kN) SF (kN) SF OK OK ding Check (m) = (kN) SF	1.8 of gro 14.2 64 (cras	BM und) fos sh barr (kNm/r BM	13.9 1 1.25 <u>rier)</u> m) 46.4	SF 14.2 disp (mm) 19 (kN/m SF 42.2 disp (mm)	pole siz CRITIC c/c (m)	1 ze (mm) 275 : <mark>AL CAS</mark> 1 ze (mm)	Embedmer (m) 1.9 E Embedmer (m)		3.7	
Seismic Los Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM	ading Chec (m) (1.5m out c (kN) SF (kN) SF OK OK ding Check (m) = (kN) SF	1.8 of gro 14.2 64 (cras	BM und) fos sh barr (kNm/r BM	13.9 1 1.25 <u>rier)</u> m)	SF 14.2 disp (mm) 19 (kN/m SF 42.2 disp (mm)	pole siz CRITIC c/c (m)	1 ze (mm) 275 <u>CAL CAS</u> 1	Embedmer (m) 1.9 E Embedmer (m) 2	Total le	3.7	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor = DESIGN (kNm) BM 46.4	ading Chec (m) (1.5m out c (kN) SF (maximum) (kN) SF OK ding Check (m) = (kN) SF	1.8 of gro 14.2 64 (cras	BM und) fos sh barr (kNm/r BM	13.9 1 1.25 <u>rier)</u> m) 46.4	SF 14.2 disp (mm) 19 (kN/m SF 42.2 disp (mm)	pole siz CRITIC c/c (m)	1 ze (mm) 275 : <mark>AL CAS</mark> 1 ze (mm)	Embedmer (m) 1.9 E Embedmer (m)	Total le	3.7	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor = DESIGN (kNm) BM 46.4 pole design (ading Chec (m) (1.5m out c (kN) SF (maximum) (kN) SF OK ding Check (m) = (kN) SF	1.8 of gro 14.2 64 (cras	BM und) fos sh barr (kNm/r BM	13.9 1 1.25 <u>rier)</u> m) 46.4	SF 14.2 disp (mm) 19 (kN/m SF 42.2 disp (mm)	pole siz CRITIC c/c (m)	1 ze (mm) 275 : <mark>AL CAS</mark> 1 ze (mm)	Embedmer (m) 1.9 E Embedmer (m) 2	Total le	3.7	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor = DESIGN (kNm) BM 46.4 pole design ((kNm) BM	ading Chec (m) (1.5m out c (kN) SF (maximum) (kN) SF OK ding Check (m) = (kN) SF	1.8 of gro 14.2 64 (crass 1.5	BM und) fos sh barn (KNm/i BM	13.9 1 1.25 <u>rier)</u> m) 46.4 1 1.23	SF 14.2 disp (mm) 19 (kN/m SF 42.2 disp (mm) n/a	pole siz	1 ze (mm) 275 CAL CAS 1 ze (mm) 275	Embedmer (m) 1.9 E Embedmer (m) 2	Total le	3.7	
Seismic Loa Max Height Load factor = DESIGN (kNm) BM 13.9 pole design ((kNm) BM 30 OK Impact Load Max Height Load factor = DESIGN (kNm) BM 46.4 pole design ((kNm)	ading Chec (m) (1.5m out c (kN) SF (kN) SF OK ding Check (m) = (kN) SF (maximum) (kN)	1.8 of gro 14.2 64 (cras	BM und) fos sh barn (KNm/i BM	13.9 1 1.25 <u>rier)</u> m) 46.4 1 1.23	SF 14.2 disp (mm) 19 (kN/m SF 42.2 disp (mm)	pole siz	1 ze (mm) 275 CAL CAS 1 ze (mm) 275	Embedmer (m) 1.9 E Embedmer (m) 2	Total le	3.7	

Project Name: 1 Harry's Place			24 077 Doc No.:
Subject:	By: J. Curreen	Date:	May 2024
RW01 - 2.0m	Verified By: W. Thorburn	Date:	May 2024

Material Properties for Timber Pole

E =	9 70		GPa	(Young M	odulus) [MGS8,	NZS3603 Ameno	lement 4, Table 2.3
ρ=	8.70		kg/m ³	(Density)		_	
S =		1	m c/c	(Spacing I	between pi l es)		0.300 m
A =		0.071		(Sectional	,		\bigcirc
=	3.97608	3E-04	m⁴	(Area Mor per pile	ment of Inertia)		
EA =				N/m ²][m ²]/[r			
EI =				[kN/m ²][m ⁴			
w =		0,312	<u>kN/m/m =</u>	: [kg/m³][m/s	s=][m=]/[m]	l	
I			m ⁴ /m		ngth of wall		
El	3.4592	2E-03	kNm²/m =	[kN/m ²][m ⁴ per unit le]/[m] ngth of wall		
				p=: 011110			
Static Loadi	ing Check		(kNm/m)	(kN/m]
	(m)		BM	SF	c/c (m)		
Max Height	(2.0m out	2.3 of aro	20.2 (und)	2 16	6 1		
Load factor =	•	<i></i>	1.t	5			
DESIGN (kNm)	(kN)				nole size (mm)	Embedmer Tota	length (m)
BM	SF		fos	disp (mm)		(m)	
30.3		24	1.52	2 29	300	2.5	4.8
pole design ((maximum)						
(kNm)	(kN) SF						
BM 41	55	78					
ОК	OK						
Seismic Loa	ading Chec	: <u>k</u>					
	(m)		(kNm/m)	(kN/m	o/o (m)		
Max Height	(m)	2.3	BM 25.9	SF 9 20.8	c/c (m) 3 1		
Load factor =	_			1			
DESIGN	-			I			
(kNm) BM	(kN)		fos	dien (mm)		Embedmer Total	length (m)
25.9	SF	20.8		disp (mm) 5 38		(m) 2.5	4.8
nolo dooige (movimum						
pole design ((kNm)	(maximum) (kN)						
BM	SF	70					
<u>41</u> ОК	ОК	78	I				
		. 10-00	h horris-	`		=	
Impact Load	ang check	Cras	(kNm/m)	<u>)</u> (kN/m	CRITICAL CAS	_	
May Hatak	(m)	~	BM	SF FOR	c/c (m)		
Max Height		2	61.5	5 50.9) 1		
Load factor =	=			1			
DESIGN (kNm)	(kN)				pole size (mm)	Embedmer Tota	length (m)
BM	SF		fos	disp (mm)		(m)	
61.5		50.9	1.2	7 n/a	300	2.8 (full passive)	4.8
pole design (· · · · · · · · · · · · · · · · · · ·						
(kNm) BM	(kN) SF						
69	0	129	<-For sho	ort term load	ing (k1 = 1.0)		

 69
 129

 OK
 OK

Project Name: 1 Harry's Place			24 077 Doc No.:
Subject:	By: J. Curreen	Date:	May 2024
RW01 - 2.5m	Verified By: W. Thorburn	Date:	May 2024

Material Properties for Timber Pole

E =										
c =		8.70			(Young Mo	dulus)	[MGS8,	NZS3603 A	mendement 4	, Table 2.3
ρ=		0E+06 450	kPa kq/m ³		(Density)					
р = S =			m c/c		(Spacing b	etween	pi l es)		0.325 m	φ
A =		0.083	m ²		(Sectional	Area)				
=	5.4765				(Area Mon	,	nertia)		\bigcap	
					per pile					
EA = EI =					l/m ²][m ²]/[n [kN/m ²][m ⁴					
w =					[kis/m ³][m/s		1			
								-		
I El		7E-04 6E-03		m =	per unit leı [kN/m²][m ⁴		all			
_					per unit lei		all		\bigcirc	
Static Loadi	ina Check									
			(kNm/i	m)	(kN/m					
Max Height	(m)	2.8	BM	34	SF 23.7	c/c (m)	1			
•	(2.5m out		und)		20.7					
<i>Load factor</i> : DESIGN	=			1.5						
(kNm)	(kN)					pole siz	e (mm)		Total length (m)
BM 51	SF	35.55	fos	1.56	disp (mm) 32		325	(m) 3	5.8	
					52		020	0	0.0	
pole design ((kNm)	(maximum) (kN))								
BM	SF									
53 OK	ОК	96								
Colomia Lov										
	adina Cha	<u> </u>								
Seisinic LO	ading Che	<u>ck</u>	(kNm/i	m)	(kN/m					
	ading Chee		ВM		SF	c/c (m)	1			
		<u>ck</u> 2.8	ВM	43.1			1			
Max Height Load factor :	(m)		ВM		SF		1	1		
Max Height <i>Load factor</i> : DESIGN	(m)		ВM	43.1	SF				Total length (m)
Max Height <i>Load factor</i> : DESIGN (kNm) BM	(m) = (kN) SF	2.8	BM	43.1 1	SF 30 disp (mm)	pole siz	e (mm)	Embedmer (m)		m)
Max Height <i>Load factor</i> : DESIGN (kNm)	(m) = (kN) SF		BM	43.1	SF 30	pole siz		Embedmer (m)	Total length (5.8	m)
Max Height Load factor : DESIGN (kNm) BM 43.1 pole design ((m) = (kN) SF (maximum)	2.8	BM	43.1 1	SF 30 disp (mm)	pole siz	e (mm)	Embedmer (m)		m)
Max Height Load factor : DESIGN (kNm) BM 43.1 pole design ((KNm)	(m) = (kN) SF	2.8	BM	43.1 1	SF 30 disp (mm)	pole siz	e (mm)	Embedmer (m)		m)
Max Height Load factor : DESIGN (kNm) BM 43.1 pole design ((kNm) BM 53	(m) = (kN) SF (maximum) (kN) SF	2.8	BM	43.1 1	SF 30 disp (mm)	pole siz	e (mm)	Embedmer (m)		m)
Max Height Load factor : DESIGN (kNm) BM 43.1 pole design ((kNm) BM 53	(m) = (kN) SF (maximum) (kN) SF	2.8	BM	43.1 1	SF 30 disp (mm)	pole siz	e (mm)	Embedmer (m)		m)
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design (KNm) BM 53 OK	(m) = (kN) SF (maximum) (kN) SF OK	2.8 30 96	fos sh barr	43.1 1 1.28	SF 30 disp (mm) 67	pole siz	e (mm)	Embedmer (m) 3		m)
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design (KNm) BM 53 OK	(m) = (kN) SF (maximum) (kN) SF OK	2.8 30 96	fos	43.1 1 1.28	SF 30 disp (mm)	pole siz	e (mm) 325	Embedmer (m) 3		m)
Max Height Load factor = DESIGN (KNm) BM 43.1 pole design ((KNm) 53 OK Impact Load	(m) = (kN) SF (maximum, (kN) SF OK OK	2.8 30 96	fos sh barr (kNm/i BM	43.1 1 1.28	SF 30 disp (mm) 67 (kN/m	pole siz	e (mm) 325	Embedmer (m) 3		m)
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design (KNm) BM 53 OK Impact Load Max Height	(m) (kN) SF (kN) SF OK OK (m)	2.8 30 96 k (cras	fos sh barr (kNm/i BM	43.1 1 1.28 rier) m)	SF 30 disp (mm) 67 (kN/m SF	pole siz	e (mm) 325 <u>AL CAS</u>	Embedmer (m) 3		m)
Max Height Load factor = DESIGN (KNm) BM 43.1 pole design ((KNm) 53 OK Impact Load Max Height Load factor = DESIGN	(m) = (kN) SF (kN) SF OK <u>OK</u> (m) =	2.8 30 96 k (cras	fos sh barr (kNm/i BM	43.1 1 1.28 <u>rier)</u> m) 78.9	SF 30 disp (mm) 67 (kN/m SF	pole siz CRITIC c/c (m)	e (mm) 325 <u>AL CAS</u> 1	Embedmer (m) 3	5.8	
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design ((KNm) 53 OK Impact Load Max Height Load factor : DESIGN (KNm)	(m) (kN) SF (kN) SF OK OK (m)	2.8 30 96 k (cras	fos sh barr (kNm/i BM	43.1 1 1.28 <u>rier)</u> m) 78.9	SF 30 disp (mm) 67 (kN/m SF 56.7	pole siz CRITIC c/c (m)	e (mm) 325 <u>AL CAS</u> 1	Embedmer (m) 3		
Max Height Load factor = DESIGN (KNm) BM 43.1 pole design ((KNm) BM 53 OK Impact Load	(m) = (kN) SF (kN) SF OK ding Chec (m) = (kN) SF	2.8 30 96 k (cras	BM fos sh barr (kNm/r BM	43.1 1 1.28 <u>rier)</u> m) 78.9	SF 30 disp (mm) 67 (kN/m SF 56.7 disp (mm)	pole siz CRITIC c/c (m)	e (mm) 325 <u>AL CAS</u> 1	Embedmer (m) 3 E Embedmer (m) 3.3	5.8 Total length (5.8	
Max Height Load factor : DESIGN (kNm) BM 43.1 pole design ((kNm) 53 OK Impact Load Max Height Load factor : DESIGN (KNm) BM 78.9	(m) = (kN) SF (kN) SF <u>OK</u> <u>ding Chec</u> (m) = (kN) SF	2.8 30 96 <u>k (cras</u> 2.5 56.7	BM fos sh barr (kNm/r BM	43.1 1 1.28 <u>rier)</u> m) 78.9 1	SF 30 disp (mm) 67 (kN/m SF 56.7 disp (mm)	pole siz CRITIC c/c (m)	e (mm) 325 <u>AL CAS</u> 1 e (mm)	Embedmer (m) 3	5.8 Total length (5.8	
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design (KNm) BM 53 OK Impact Load Max Height Load factor : DESIGN (KNm) BM 78.9 pole design ((KNm)	(m) = (kN) SF (kN) SF OK ding Chec: (m) = (kN) SF (maximum, (kN)	2.8 30 96 <u>k (cras</u> 2.5 56.7	BM fos sh barr (kNm/r BM	43.1 1 1.28 <u>rier)</u> m) 78.9 1	SF 30 disp (mm) 67 (kN/m SF 56.7 disp (mm)	pole siz CRITIC c/c (m)	e (mm) 325 <u>AL CAS</u> 1 e (mm)	Embedmer (m) 3 E Embedmer (m) 3.3	5.8 Total length (5.8	
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design (KNm) BM 53 OK Impact Load Max Height Load factor : DESIGN (KNm) BM 78.9 pole design (KNm)	(m) = (kN) SF (kN) SF OK ding Chec (m) = (kN) SF (maximum) (kN) SF	2.8 30 96 2.5 56.7	fos sh barr (KNM/ BM	43.1 1 1.28 <u>rier)</u> m) 78.9 1 1.35	SF 30 disp (mm) 67 (kN/m SF 56.7 disp (mm) n/a	pole siz CRITIC c/c (m) pole siz	e (mm) 325 AL CAS 1 e (mm) 325	Embedmer (m) 3 E Embedmer (m) 3.3	5.8 Total length (5.8	
Max Height Load factor : DESIGN (KNm) BM 43.1 pole design (KNm) BM 53 OK Impact Load Max Height Load factor : DESIGN (kNm) BM 78.9 pole design ((kNm)	(m) = (kN) SF (kN) SF OK ding Chec (m) = (kN) SF (maximum) (kN) SF	2.8 30 96 <u>k (cras</u> 2.5 56.7	fos sh barr (KNM/ BM	43.1 1 1.28 <u>rier)</u> m) 78.9 1 1.35	SF 30 disp (mm) 67 (kN/m SF 56.7 disp (mm)	pole siz CRITIC c/c (m) pole siz	e (mm) 325 AL CAS 1 e (mm) 325	Embedmer (m) 3 E Embedmer (m) 3.3	5.8 Total length (5.8	

Project Client Job No Date Calculated by: Reviewed by: Comments	1 Harry's Place, Kawakawa A. Wynyard 24 077 23/05/2024 J. Curreen W. Thorburn RW01			
Factored load on the plank at the base of the wall =		25.65	kPa	From Wallap
				2.5 Height (m)
				17.1 kPa
Structural Design of Lagging to NZS 3603:1993				1.5 Load factor
				3 Rails Required
Timber Lagging: Structural actions				
	Lagging width b =	50	50	2.1 Height (m)
	Lagging depth d =	150	150	14.8 kPa
For a maximum soil pressure of 25.65 kPa. The UDL on				
	lagging "d" =	3.85	kN/m	2 Rails Required
	Lagging Span "L" =	1.2	m	
	Maximum factored moment $M^* = 1/8 dL^2$	0.693	kNm	0.9 Height (m)
				7.6 kPa
Under Flexure, calculate the minimum lagging depth for moment capacity				1 Rails Required
	Bending Stress, f _b =	11.7	MPa	
	Shear Stress, f _s =	2.4	MPa	
	No of parallel support elements, n =	3		Rails Height
	Strength Reduction Factor, $\phi =$	0.8		Single 0 to 0.9
	Duration Factor, $k_1 =$	0.6		Double 0.9 - 2.1
	Parallel Support Factor , k_4 =	1.00		Triple 2.1 - 2.5
	Grid System Factor, k ₅ =	1.00		
	Section modulus of lagging, $Z = bd^2/6 =$	187500	mm ³	
	$\phi M_{\rm n} = \phi k_1 k_4 k_5 f_{\rm b} Z =$	1.053	kNm	
Pe	rcentage of lagging moment capacity utilised	66%		
Lagging OK for Moment Capacity!				
Check for Shear Capacity			•	
	For 150 x 50 lagging. Shear surface area =	5000.0	mm²	
	$\phi V_n = \phi k_1 k_4 k_5 f_s A_s =$	5,760	kN	
	Compare with V* =	2.886	kN	$V^* = 0.625 wL$
	Percentage of Shear capacity utilised	50%		
	Lagging OK for Shear Capacity!			1
L				1

Use 150 x (3)50 lagging, spanning continuously across a minimum of 2 pole spacings

Page 1 of 1 Job Title 1 HARRY'S PLACE HAIGH WORKMANE Job No. 24077 **Civil & Structural Engineers** Designer JMC 0800 424 447 (0800 HAIGHS) CRASH BARRIER DESIGN E: info@haighworkman.co.nz Date MAY 2024 Kerikeri · Whangarei · Warkworth Crash impact load from As/NZS 1170.1 - Light Traffic (Type F)
→ 30 kN per 1.5m length of wall, 0.5m above top of wall. $\omega = \frac{30}{1.5} = \frac{20 \text{ kN}}{\text{m}} \frac{\text{length of wall}}{\text{length of wall}}$ l = 1.0 m (pole spacing) $BM = \omega l^2 = \frac{20 \times 1.0^2}{8} = 2.5 \text{ kN.m}$ * M = 1.5 × 2.5 = 3.75 kN.m For SG8 timber, fb = 11.7 MPa (Try 125 mm post) $\phi Mn = k_1 \cdot \phi \cdot f_b \cdot z$ (Use duration factor, $k_1 = 1.0$) $3.75 = 1.0 \times 0.8 \times 11.7 \times \left(\frac{125 \times d^2}{6 \times 10^6}\right)$ ⇒ d = 138.7 mm (would need 2x posts). Try 2/1252 rails: $\phi M_n = 2 \times 1.0 \times 0.8 \times 11.7 \times \left(\frac{125 \times 125^2}{6 \times 10^6}\right)$ = 6.09 kN.m (6.09) (3.75) $\Rightarrow OKAY.$ Use 2/125×125 568 rails 144 treated, staggered, continous over min. 2 spans.

HAIGH WORKMAN LTD	Sheet No.
Program: WALLAP Version 6.06 Revision A52.B71.R56	Job No. 24 077
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01_1-5m_static	
RW01_1.5m_static	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

INPUT DATA

SOIL PROFILE

Stratum	Elevation of	Soil	types
no.	top of stratum	Left side	Right side
1	0.00	1 Retained fill c'=0	1 Retained fill c'=0
2	-1.50	3 Residual Waipapa	3 Residual Waipapa

SOIL PROPERTIES

\$	Soil type	Bulk density	Young's Modulus	At rest coeff.	Consol state.	Active limit	Passive limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(I	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Retained	17.00	10000	0.500	NC	0.338	3.148	0.0d
	fill c'=0				(0.250)	(1.357)	(4.404)	
2	Retained	17.00	10000	0.500	OC	0.338	3.148	3.000d
	fill				(0.250)	(1.357)	(4.404)	
3	Residual	18.00	25000	0.500	OC	0.285	3.886	5.000d
	Waipapa				(0.250)	(1.238)	(4.998)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka			parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Retained fill c'=0	26.00	0.640	0.00	26.00	0.312	0.00
2	Retained fill	26.00	0.640	0.00	26.00	0.312	0.00
3	Residual Waipapa	30.00	0.631	0.00	30.00	0.305	0.00

GROUND WATER CONDITIONS

GROUND WATER CONDITIONS									
Density of water = 10.00 kN/m3									
	Left side	Right side							
Initial water table elevation	-6.00	-6.00							

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure = Soldier Pile Wall Soldier Pile width = 0.28 m Soldier Pile spacing = 1.00 m Passive mobilisation factor = 3.00 Elevation of toe of wall = -3.70 Maximum finite element length = 0.20 m Youngs modulus of wall E = 8.7000E+06 kN/m2 Moment of inertia of wall I = 2.8070E-04 m4/m run = 2.8070E-04 m4 per pile E.I = 2442.1 kN.m2/m run Yield Moment of wall = Not defined

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	0.00	0.20(L)	12.00	3.00	10.00	=	N/A	N/A
2	-1.80	-0.00(R)	12.00	3.00	5.40	=	N/A	N/A

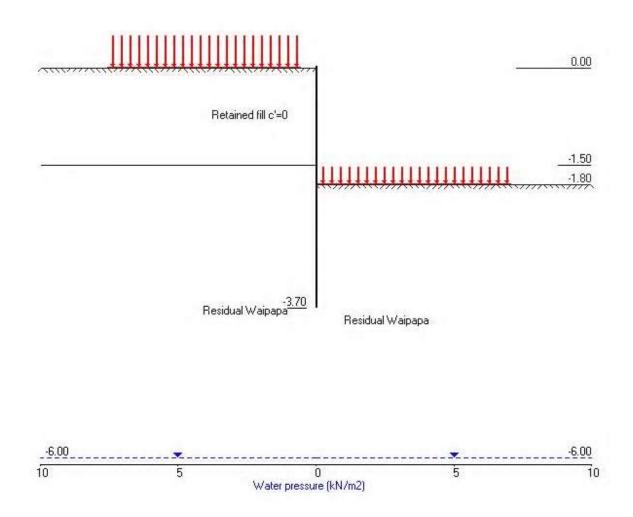
Note: L = Left side, R = Right side

С

CONSTRUCTION S Construction stage no.	Stage description					
2	Excavate to elevation -1.80 on RIGHT side Apply surcharge no.1 at elevation 0.00 Apply surcharge no.2 at elevation -1.80					
FACTORS OF SAL	FETY and ANALYSIS OPTIONS					
	alysis: halysis – Strength Factor method bil strength for calculating wall depth = 1.50					
Minimum equ:	or undrained strata: ivalent fluid density = 5.00 kN/m3 ch of water filled tension crack = 0.00 m					
Method - S Open Tension	nt and displacement calculation: Subgrade reaction model using Influence Coefficients n Crack analysis? - No Modulus Parameter (L) = 0 m					
Boundary cond Length of wa	ditions: all (normal to plane of analysis) = 1000.00 m					

Width of excavation on Left side of wall = 20.00 mWidth of excavation on Right side of wall = 20.00 m

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m


OUTPUT OPTIONS

Stage Stage description	Output	c options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Excav. to elev1.80 on RIGHT side	Yes	Yes	Yes
2 Apply surcharge no.1 at elev. 0.00	No	No	No
3 Apply surcharge no.2 at elev1.80	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2019 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56 Licensed from GEOSOLVE Data filename/Run ID: RW01_1-5m_static RW01_1.5m_static 1 Harry's Place, Kawakawa		Sheet No. Job No. 24 077 Made by : JMC Date:22-05-2024 Checked :
	Units:	 kN,m

Stage No.3 Apply surcharge no.2 at elev. -1.80

HAIGH WORKMAN LTD	Sheet No.
Program: WALLAP Version 6.06 Revision A52.B71.R56	Job No. 24 077
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01_1-5m_static	
RW01_1.5m_static	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :
I HATTY'S PIACE, KAWAKAWA	Units: kN,m

Stage No. 3 Apply surcharge no.2 at elevation -1.80

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -3.70		ev. for 1.500	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
3	0.00	-1.80	Cant.	1.490	-3.40	* * *	* * *	L to R

Legend: *** Result not found

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.28m; spacing = 1.00m Passive mobilisation factor = 3.000 Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	0.00	0.00	0.014	6.51E-03	0.0	-0.0	
2	-0.20	1.76	0.013	6.51E-03	0.2	0.0	
3	-0.40	3.82	0.012	6.51E-03	0.7	0.1	
4	-0.60	5.49	0.011	6.49E-03	1.7	0.3	
5	-0.80	6.97	0.009	6.44E-03	2.9	0.8	
6	-1.00	8.33	0.008	6.35E-03	4.4	1.5	
7	-1.20	9.62	0.007	6.18E-03	6.2	2.6	
8	-1.35	10.56	0.006	5.99E-03	7.7	3.6	
9	-1.50	11.48	0.005	5.73E-03	9.4	4.9	
		3.77	0.005	5.73E-03	9.4	4.9	
10	- 1.65	4.62	0.004	5.38E-03	10.0	6.4	
11	-1.80	5.45	0.003	4.95E-03	10.8	7.9	
		-17.24	0.003	4.95E-03	10.8	7.9	
12	-2.00	- 27.78	0.002	4.22E-03	6.3	9.7	
13	-2.20	-38.00	0.002	3.39E-03	-0.3	10.6	
14	-2.40	-21.89	0.001	2.55E-03	-6.3	9.8	
15	-2.60	-8.90	0.001	1.82E-03	-9.4	8.1	
16	-2.80	0.13	0.000	1.24E-03	-10.2	6.1	
17	-3.00	6.17	0.000	8.30E-04	-9.6	4.0	
18	-3.20	10.89	-0.000	5.75E-04	-7.9	2.2	
19	-3.40	15.06	-0.000	4.49E-04	-5.3	0.9	
20	-3.55	17.74	-0.000	4.16E-04		0.2	
21	-3.70	20.31	-0.000	4.09E-04	0.0	-0.0	

Run ID. RW01 1-5m static	Sheet No.
RW01_1.5m_static	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

(continued)

Stage No.3 Apply surcharge no.2 at elevation -1.80

		LEFT side						
				Effectiv	ve stresse	S	Total	Coeff. of
Node	Y	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	<u>coord</u>	press.	<u>-al</u>	<u>limit</u>	<u>limit</u>	pressure	pressure	<u>reaction</u>
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11140
2	-0.20	0.00	5.22	1.76	16.42	1.76	1.76a	11140
3	-0.40	0.00	11.29	3.82	35.55	3.82	3.82a	11140
4	-0.60	0.00	16.21	5.48	51.04	5.49	5.49	2450
5	-0.80	0.00	20.48	6.92	64.46	6.97	6.97	2450
6	-1.00	0.00	24.39	8.25	76.80	8.33	8.33	2450
7	-1.20	0.00	28.11	9.51	88.49	9.62	9.62	2450
8	- 1.35	0.00	30.81	10.42	96.99	10.56	10.56	2450
9	-1.50	0.00	33.45	11.31	105.30	11.48	11.48	2450
		0.00	33.45	3.35	154.96	3.77	3.77	6124
10	-1.65	0.00	36.20	4.13	165.63	4.62	4.62	6124
11	-1.80	0.00	38.91	4.91	176.16	5.45	5.45	6124
		0.00	38.91	4.91	145.33	5.45	5.45	6124
12	-2.00	0.00	42.48	5.92	156.78	6.55	6.55	6124
13	-2.20	0.00	46.00	6.93	168.08	7.62	7.62	6124
14	-2.40	0.00	49.50	7.93	179.29	13.34	13.34	6124
15	-2.60	0.00	52.97	8.92	190.41	19.21	19.21	6124
16	-2.80	0.00	56.42	9.90	201.55	23.82	23.82	6124
17	-3.00	0.00	59.85	10.88	212.74	27.49	27.49	6124
18	-3.20	0.00	63.28	11.86	223.89	31.04	31.04	6124
19	-3.40	0.00	66.69	12.83	235.02	34.66	34.66	6124
20	-3.55	0.00	69.25	13.56	243.36	37.19	37.19	6124
21	-3.70	0.00	71.81	14.29	251.69	39.67	39.67	6124

RIGHT side

		Effective stresses				Total	Coeff. of	
Node	Y	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	coord	press.	-al	limit	limit	pressure	pressure	reaction
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	-0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	-0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	-0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	-1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	-1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	-1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	-1.65	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	-1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	5.40	0.00	38.79	22.69	22.69	6520
12	-2.00	0.00	9.00	0.00	50.50	34.33	34.33	6520
13	-2.20	0.00	12.59	0.00	62.20	45.62	45.62	6520
14	-2.40	0.00	16.18	0.00	73.88	35.24	35.24	6520
15	-2.60	0.00	19.76	0.00	85.51	28.11	28.11	6520
16	-2.80	0.00	23.32	0.46	97.11	23.69	23.69	6520
17	-3.00	0.00	26.87	1.47	108.66	21.32	21.32	6520
18	-3.20	0.00	30.41	2.48	120.17	20.15	20.15	6520
19	-3.40	0.00	33.93	3.49	131.63	19.61	19.61	6520
20	-3.55	0.00	36.56	4.24	140.20	19.45	19.45	6520
21	-3.70	0.00	39.19	4.99	148.75	19.36	19.36	6520

Note: 3.82a Soil pressure at active limit 123.45p Soil pressure at passive limit

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56	Sheet No. Job No. 24 077
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01 1-5m static	
RW01 1.5m static	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

Summary of results

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -3.70		ev. for 1.500	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	0.00	-1.80	Cant.	1.532	-3.43	-3.64	1.84	L to R
2	0.00	-1.80	Cant.	1.320	-3.44	* * *	* * *	L to R
3	0.00	-1.80	Cant.	1.490	-3.40	* * *	* * *	L to R

Legend: *** Result not found

HAIGH WORKMAN LTD | Sheet No. Program: WALLAP Version 6.06 Revision A52.B71.R56 | Job No. 24 077 Licensed from GEOSOLVE | Made by : JMC Data filename/Run ID: RW01_1-5m_static | RW01_1.5m_static | Date:22-05-2024 1 Harry's Place, Kawakawa | Checked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.28m; spacing = 1.00m Passive mobilisation factor = 3.000 Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Bending moment, shear force and displacement envelopes

Node	Y	Displac	cement	Bending	moment	Shear t	force
no.	coord	maximum	minimum	maximum	minimum	maximum	<u>minimum</u>
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	0.00	0.014	0.000	0.0	-0.0	0.0	0.0
2	-0.20	0.013	0.000	0.0	0.0	0.2	0.0
3	-0.40	0.012	0.000	0.1	0.0	0.7	0.0
4	-0.60	0.011	0.000	0.3	0.0	1.7	0.0
5	-0.80	0.009	0.000	0.8	0.0	2.9	0.0
6	-1.00	0.008	0.000	1.5	0.0	4.4	0.0
7	-1.20	0.007	0.000	2.6	0.0	6.2	0.0
8	- 1.35	0.006	0.000	3.6	0.0	7.7	0.0
9	-1.50	0.005	0.000	4.9	0.0	9.4	0.0
10	-1.65	0.004	0.000	6.4	0.0	10.0	0.0
11	-1.80	0.003	0.000	7.9	0.0	10.8	0.0
12	-2.00	0.002	0.000	9.7	0.0	6.3	0.0
13	-2.20	0.002	0.000	10.6	0.0	0.0	-2.3
14	-2.40	0.001	0.000	9.8	0.0	0.0	-6.3
15	-2.60	0.001	0.000	8.1	0.0	0.0	-9.4
16	-2.80	0.000	0.000	6.1	0.0	0.0	-10.2
17	-3.00	0.000	0.000	4.0	0.0	0.0	-9.6
18	-3.20	0.000	-0.000	2.2	0.0	0.0	-7.9
19	-3.40	0.000	-0.000	0.9	0.0	0.0	-5.3
20	-3.55	0.000	-0.000	0.2	0.0	0.0	-2.9
21	-3.70	0.000	-0.000	0.0	-0.0	0.0	0.0

Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			- Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	6.4	-2.20	-0.0	0.00	7.0	-1.80	-6.0	-2.60
2	10.5	-2.20	-0.0	0.00	10.6	-1.80	-10.1	-2.80
3	10.6	-2.20	-0.0	0.00	10.8	-1.80	-10.2	-2.80

Maximum and minimum displacement at each stage

					n eenge
Stage		Displac	ement		
no.	maximum	elev.	<u>minimum</u>	elev.	Stage description
	m		m		
1	0.008	0.00	0.000	0.00	Excav. to elev1.80 on RIGHT side
2	0.014	0.00	-0.000	-3.70	Apply surcharge no.1 at elev. 0.00
3	0.014	0.00	-0.000	-3.70	Apply surcharge no.2 at elev1.80

HAIGH WORKMAN LTD| Sheet No.Program: WALLAP Version 6.06 Revision A52.B71.R56| Job No. 24 077Licensed from GEOSOLVE| Made by : JMCData filename/Run ID: RW01_1-5m_seismic|RW01_1.5m_seismic| Date:22-05-20241 Harry's Place, Kawakawa| Checked :

Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of		Soil types
no.	top of stratum	Left side	Right side
1	0.00	1 Retained fi	ll c'=0 1 Retained fill c'=0
2	-1.50	3 Residual Wa	ipapa 3 Residual Waipapa

SOIL PROPERTIES

\$	Soil type	Bulk density	Young's Modulus	At rest coeff.	Consol state.	Active limit	Passive limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(I	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Retained	17.00	10000	0.500	NC	0.338	3.148	0.0d
	fill c'=0				(0.250)	(1.357)	(4.404)	
2	Retained	17.00	10000	0.500	OC	0.338	3.148	3.000d
	fill				(0.250)	(1.357)	(4.404)	
3	Residual	18.00	25000	0.500	OC	0.285	3.886	5.000d
	Waipapa				(0.250)	(1.238)	(4.998)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka			parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Retained fill c'=0	26.00	0.640	0.00	26.00	0.312	0.00
2	Retained fill	26.00	0.640	0.00	26.00	0.312	0.00
3	Residual Waipapa	30.00	0.631	0.00	30.00	0.305	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3		
	Left side	Right side
Initial water table elevation	-6.00	-6.00

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure = Soldier Pile Wall Soldier Pile width = 0.28 m Soldier Pile spacing = 1.00 m Passive mobilisation factor = 3.00 Elevation of toe of wall = -3.70 Maximum finite element length = 0.20 m Youngs modulus of wall E = 8.7000E+06 kN/m2 Moment of inertia of wall I = 2.8070E-04 m4/m run = 2.8070E-04 m4 per pile E.I = 2442.1 kN.m2/m run Yield Moment of wall = Not defined

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	0.00	0.20(L)	12.00	3.00	10.00	=	0	N/A
2	-1.80	-0.00(R)	12.00	3.00	5.40	=	0	N/A

Note: L = Left side, R = Right side

CONSTRUCTION STAGES

CONDINCTION	DIAGED
Construction	Stage description
stage no.	
1	Excavate to elevation -1.80 on RIGHT side
2	Apply surcharge no.1 at elevation 0.00
3	Apply surcharge no.2 at elevation -1.80
4	Apply seismic loading:
	0.0800g horizontal
	Line of action of quasi-static seismic force = 0.333
	Seismic loading model: Quasi-static loading

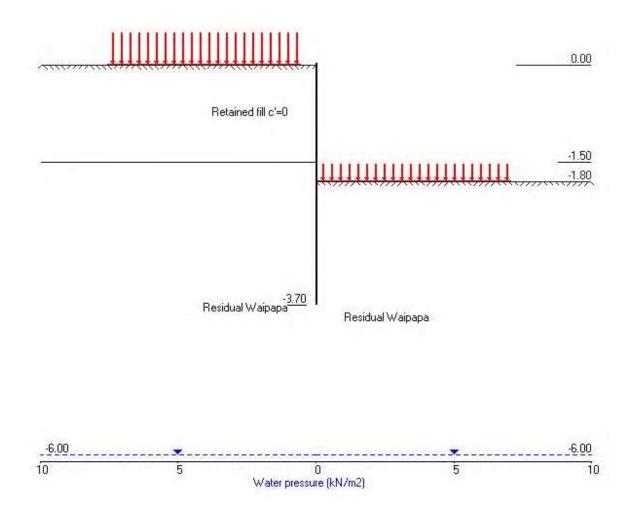
FACTORS OF SAFETY and ANALYSIS OPTIONS

```
Stability analysis:
Method of analysis - Strength Factor method
 Factor on soil strength for calculating wall depth = 1.00
Active limit pressures by Wedge Stability (Seismic Stages only)
Passive limit pressures by Wedge Stability (Seismic Stages only)
Parameters for undrained strata:
 Minimum equivalent fluid density
                                                    =
                                                         5.00 kN/m3
 Maximum depth of water filled tension crack = 0.00 \text{ m}
Bending moment and displacement calculation:
Method - Subgrade reaction model using Influence Coefficients
```

Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 0 m Boundary conditions: Length of wall (normal to plane of analysis) = 1000.00 m

Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 20.00 m

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m


OUTPUT OPTIONS

Stage Stage description	Output	t options ·	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Excav. to elev1.80 on RIGHT side	Yes	Yes	Yes
2 Apply surcharge no.1 at elev. 0.00	No	No	No
3 Apply surcharge no.2 at elev1.80	Yes	Yes	Yes
4 Quasi-static Seismic load: 0.080g(H)	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2019 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56	Sheet No. Job No. 24 077
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01 1-5m seismic	
RW01 1.5m seismic	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56 Licensed from GEOSOLVE Data filename/Run ID: RW01_1-5m_seismic RW01_1.5m_seismic	Sheet No. Job No. 24 077 Made by : JMC Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :
	Units: kN,m

Stage No. 4 Apply seismic loading: 0.0800g horizontal Line of action of quasi-static seismic force = 0.333 Seismic loading model: Quasi-static loading

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method

Factor of safety on soil strength Active limit pressures by Wedge Stability (Seismic Stages only) Passive limit pressures by Wedge Stability (Seismic Stages only)

				FoS fo elev. =	r toe -3.70		ev. for 1.000		
Stage	Ground	d level	Prop		Moment	Toe	Wall	Direction	
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of	
				<u>Safety</u>	<u>at elev.</u>		<u>-ation</u>	failure	
4	0.00	-1.80	Cant.	1.258	-3.41	-3.06	1.26	L to R	

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.28m; spacing = 1.00m Passive mobilisation factor = 3.000 Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Active limit pressures by Wedge Stability (Seismic Stages only) Passive limit pressures by Wedge Stability (Seismic Stages only)

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	0.00	0.00	0.019	8.78E-03	0.0	0.0	
2	-0.20	4.44	0.017	8.78E-03	0.4	0.0	
3	-0.40	7.15	0.015	8.77E-03	1.6	0.2	
4	-0.60	6.73	0.014	8.73E-03	3.0	0.7	
5	-0.80	8.50	0.012	8.65E-03	4.5	1.4	
6	-1.00	10.12	0.010	8.49E-03	6.4	2.5	
7	-1.20	11.67	0.009	8.22E-03	8.6	4.0	
8	- 1.35	12.78	0.007	7.93E-03	10.4	5.4	
9	-1.50	13.88	0.006	7.55E-03	12.4	7.1	
		4.77	0.006	7.55E-03	12.4	7.1	
10	-1.65	5.89	0.005	7.05E-03	13.2	9.0	
11	-1.80	6.99	0.004	6.43E-03	14.2	11.1	
		-36.17	0.004	6.43E-03	14.2	11.1	
12	-2.00	-39.36	0.003	5.44E-03	6.6	13.2	
13	-2.20	-43.65	0.002	4.33E-03	-1.7	13.9	
14	-2.40	-27.10	0.001	3.24E-03	-8.8	12.7	
15	-2.60	-9.92	0.001	2.29E-03	-12.5	10.4	
16	-2.80	1.40	0.000	1.55E-03	-13.3	7.7	
17	-3.00	8.77	-0.000	1.03E-03	-12.3	5.1	
18	-3.20	14.36	-0.000	7.11E-04	-10.0	2.8	
19	-3.40	19.14	-0.000	5.53E-04	-6.7	1.1	
20	-3.55	22.21	-0.000	5.12E-04	-3.6	0.3	
21	-3.70	25.15	-0.000	5.03E-04	0.0	-0.0	

Run ID. RW01 1-5m seismic	Sheet No.
RW01_1.5m_seismic	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

(continued)

Stage No.4 Apply seismic loading: 0.0800g horizontal Line of action of quasi-static seismic force = 0.333 Seismic loading model: Quasi-static loading

LEFT side Effective stresses Total Coeff. of Node Y Water Vertic Active Passive Earth <u>earth</u> subgrade press. pressure <u>reaction</u> pressure limit limit <u>no.</u> coord -al kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 kN/m3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4142 1 2 -0.20 0.00 5.22 4.44 16.42 4.44 4.44a 4142 3 -0.40 0.00 11.29 7.15 40.17 7.15 7.15a 4142 4 -0.60 0.00 16.21 6.73 64.30 6.73 6.73a 4142 5 8.50a -0.80 0.00 20.48 8.50 81.20 4142 8.50 6 -1.00 0.00 24.39 10.12 96.74 10.12 10.12a 4142 7 -1.20 11.67a 0.00 28.11 11.67 111.48 11.67 4142 -1.35 0.00 30.81 12.78 122.17 12.78 12.78a 8 4142 9 -1.50 0.00 33.45 13.88 132.65 13.88 13.88a 4142 33.45 4.77 4.77a 0.00 4.77 142.78 10355 10 -1.65 0.00 36.20 5.89 152.61 5.89 5.89a 10355 162.31 6.99 11 -1.80 0.00 38.91 6.99 6.99a 10355 0.00 38.91 6.99 133.91 6.99 6.99a 10355 12 -2.00 0.00 42.48 8.44 144.45 8.44 8.44a 10355 13 -2.20 0.00 46.00 9.87 154.87 9.87 9.87a 10355 14 -2.40 0.00 49.50 11.29 165.19 11.85 11.85 10355 15 -2.60 0.00 52.97 12.70 175.44 18.91 18.91 10355 -2.80 56.42 24.46 16 0.00 14.10 185.63 24.46 13105 17 -3.00 0.00 59.85 15.50 195.78 28.79 28.79 13105 18 -3.20 0.00 63.28 16.77 206.96 32.77 32.77 13105 19 -3.40 0.00 66.69 18.01 218.23 36.71 36.71 13105 20 -3.55 0.00 69.25 19.04 225.87 39.43 39.43 13105 21 -3.70 0.00 71.81 20.06 233.50 42.09 42.09 13105

		RIGHT side						
			Effective stresses					Coeff. of
Node	Y	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	coord	press.	-al	limit	limit	pressure	pressure	reaction
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	-0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	-0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	-0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	-1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	-1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	-1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	-1.65	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	-1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	5.40	0.00	43.77	43.16	43.16	25884
12	-2.00	0.00	9.00	0.00	51.04	47.80	47.80	25884
13	-2.20	0.00	12.59	0.00	55.54	53.52	53.52	25884
14	-2.40	0.00	16.18	0.00	65.93	38.96	38.96	25884
15	-2.60	0.00	19.76	0.00	76.29	28.83	28.83	24796
16	-2.80	0.00	23.32	0.00	86.62	23.06	23.06	13105
17	-3.00	0.00	26.87	0.00	96.90	20.02	20.02	13105
18	-3.20	0.00	30.41	0.00	107.12	18.41	18.41	13105
19	-3.40	0.00	33.93	0.00	117.31	17.57	17.57	13105
20	-3.55	0.00	36.56	0.00	121.36	17.22	17.22	13105
21	-3.70	0.00	39.19	0.00	124.95	16.94	16.94	13105

Run ID. RW01_1-5m_seismic	Sheet No.
RW01_1.5m_seismic	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :
Stage No.4 Apply seismic loading:	(continued)

HAIGH WORKMAN LTD	Sheet No.
Program: WALLAP Version 6.06 Revision A52.B71.R56	Job No. 24 077
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01_1-5m_seismic	
RW01_1.5m_seismic	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

Summary of results

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method

Factor of safety on soil strength Active limit pressures by Wedge Stability (Seismic Stages only) Passive limit pressures by Wedge Stability (Seismic Stages only)

				FoS for toe		Toe el	ev. for	
				elev. =	-3.70	FoS =	1.000	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	<u>at elev.</u>		<u>-ation</u>	failure
1	0.00	-1.80	Cant.	1.531	-3.43	-2.76	0.96	L to R
2	0.00	-1.80	Cant.	1.320	-3.44	-3.00	1.20	L to R
3	0.00	-1.80	Cant.	1.490	-3.40	-2.80	1.00	L to R
4	0.00	-1.80	Cant.	1.258	-3.41	-3.06	1.26	L to R

HAIGH WORKMAN LTD| Sheet No.Program: WALLAP Version 6.06 Revision A52.B71.R56| Job No. 24 077Licensed from GEOSOLVE| Made by : JMCData filename/Run ID: RW01_1-5m_seismic|RW01_1.5m_seismic| Date:22-05-20241 Harry's Place, Kawakawa| Checked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.28m; spacing = 1.00m
Passive mobilisation factor = 3.000
Length of wall perpendicular to section = 1000.00m
Subgrade reaction model - Boussinesq Influence coefficients
Soil deformations are elastic until the active or passive limit is reached
Active limit pressures by Wedge Stability (Seismic Stages only)
Passive limit pressures by Wedge Stability (Seismic Stages only)

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Bendi	ng moment	, shear :	force and	displacement	envelopes		
Node	Y	Displa	cement	Bending	moment	Shear	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	0.00	0.019	0.000	0.0	-0.0	0.0	0.0
2	-0.20	0.017	0.000	0.0	0.0	0.4	0.0
3	-0.40	0.015	0.000	0.2	0.0	1.6	0.0
4	-0.60	0.014	0.000	0.7	0.0	3.0	0.0
5	-0.80	0.012	0.000	1.4	0.0	4.5	0.0
6	-1.00	0.010	0.000	2.5	0.0	6.4	0.0
7	-1.20	0.009	0.000	4.0	0.0	8.6	0.0
8	-1.35	0.007	0.000	5.4	0.0	10.4	0.0
9	-1.50	0.006	0.000	7.1	0.0	12.4	0.0
10	-1.65	0.005	0.000	9.0	0.0	13.2	0.0
11	-1.80	0.004	0.000	11.1	0.0	14.2	0.0
12	-2.00	0.003	0.000	13.2	0.0	6.6	0.0
13	-2.20	0.002	0.000	13.9	0.0	0.0	-2.3
14	-2.40	0.001	0.000	12.7	0.0	0.0	-8.8
15	-2.60	0.001	0.000	10.4	0.0	0.0	-12.5
16	-2.80	0.000	0.000	7.7	0.0	0.0	-13.3
17	-3.00	0.000	-0.000	5.1	0.0	0.0	-12.3
18	-3.20	0.000	-0.000	2.8	0.0	0.0	-10.0
19	-3.40	0.000	-0.000	1.1	0.0	0.0	-6.7
20	-3.55	0.000	-0.000	0.3	0.0	0.0	-3.6
21	-3.70	0.000	-0.000	0.0	-0.0	0.0	0.0

Maximum and minimum bending moment and shear force at each stage

Stage		Bending	g moment			- Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	6.4	-2.20	-0.0	0.00	7.0	-1.80	-6.0	-2.60
2	10.5	-2.20	-0.0	0.00	10.6	-1.80	-10.1	-2.80
3	10.6	-2.20	-0.0	0.00	10.8	-1.80	-10.2	-2.80
4	13.9	-2.20	-0.0	-3.70	14.2	-1.80	-13.3	-2.80

Maximum and minimum displacement at each stage

Stage		Displac	cement		-
no.	maximum	elev.	<u>minimum</u>	elev.	Stage description
	m		m		
1	0.008	0.00	0.000	0.00	Excav. to elev1.80 on RIGHT side
2	0.014	0.00	-0.000	-3.70	Apply surcharge no.1 at elev. 0.00
3	0.014	0.00	-0.000	-3.70	Apply surcharge no.2 at elev1.80
4	0.019	0.00	-0.000	-3.70	Quasi-static Seismic load: 0.080g(H)

HAIGH WORKMAN LTD | Sheet No. Program: WALLAP Version 6.06 Revision A52.B71.R56 | Job No. 24 077 Licensed from GEOSOLVE | Made by : JMC Data filename/Run ID: RW01_1-5m_impactload | RW01_1.5m_impact load | Date:21-05-2024 1 Harry's Place, Kawakawa | Checked :

Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of		Soil types	
no.	top of stratum	Left side	Right side	
1	0.00	1 Retained fi	ill c'=0 1 Retained fill c'=0	
2	-1.50	3 Residual Wa	aipapa 3 Residual Waipapa	

SOIL PROPERTIES

	Soil type	Bulk density	Young's Modulus	At rest coeff.	Consol state.	Active limit	Passive limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
()	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Retained	17.00	10000	0.500	NC	0.338	3.148	0.0d
	fill c'=0				(0.250)	(1.357)	(4.404)	
2	Retained	17.00	10000	0.500	OC	0.338	3.148	3.000d
	fill				(0.250)	(1.357)	(4.404)	
3	Residual	18.00	25000	0.500	OC	1.000	1.000	75.00u
	Waipapa				(0.490)	(2.000)	(2.000)	

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Retained fill c'=0	26.00	0.640	0.00	26.00	0.312	0.00
2	Retained fill	26.00	0.640	0.00	26.00	0.312	0.00
3	Residual Waipapa	0.00	0.000	0.00	0.00	0.000	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3		
	Left side	Right side
Initial water table elevation	-6.00	-6.00

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure = Soldier Pile Wall Soldier Pile width = 0.28 m Soldier Pile spacing = 1.00 m Passive mobilisation factor = 3.00 Elevation of toe of wall = -3.50 Maximum finite element length = 0.20 m Youngs modulus of wall E = 8.7000E+06 kN/m2 Moment of inertia of wall I = 2.8070E-04 m4/m run = 2.8070E-04 m4 per pile E.I = 2442.1 kN.m2/m run Yield Moment of wall = Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

Load		Horizontal	Moment	Moment	Partial
no.	Elevation	load	load	restraint	factor
		kN/m run	kN.m/m run	kN.m/m/rad	(Category)
1	0.50	20.00	0	0	N/A

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	0.00	0.20(L)	12.00	3.50	2.50	=	N/A	N/A

Note: L = Left side, R = Right side

CONSTRUCTION STAGES

ConstructionStage descriptionstage no.------1Excavate to elevation -1.50 on RIGHT side2Apply surcharge no.1 at elevation 0.003Apply load no.1 at elevation 0.50

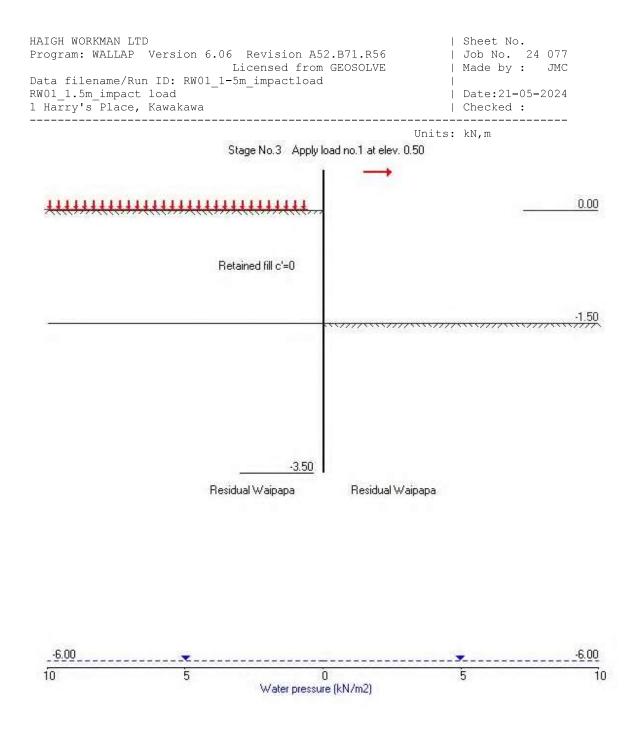
FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.00

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 0 m

Boundary conditions: Length of wall (normal to plane of analysis) = 1000.00 m


Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 20.00 m

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m

OUTPUT OPTIONS

Stage Stage description	Outpu	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Excav. to elev1.50 on RIGHT side	Yes	Yes	Yes
2 Apply surcharge no.1 at elev. 0.00	No	No	No
3 Apply load no.1 at elev. 0.50	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2019 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56 Licensed from GEOSOLVE		Sheet No. Job No. 24 077 Made by : JMC
Data filename/Run ID: RW01_1-5m_impactload RW01_1.5m_impact load 1 Harry's Place, Kawakawa		Date:21-05-2024 Checked :
	Units:	kN,m

Stage No. 3 Apply load no.1 at elevation 0.50

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -3.50		ev. for 1.000	
	Ground Act.		Prop Elev.		Moment equilib.	<u>Toe</u> elev.	<u>Wall</u> Penetr	Direction of
3	0.00	-1.50	Cant.		at elev. -2.78	-3.27	<u>-ation</u> 1.77	<u>failure</u> L to R

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall

Analysis options
Soldier Pile width = 0.28m; spacing = 1.00m
Passive mobilisation factor = 3.000
Length of wall perpendicular to section = 1000.00m
Subgrade reaction model - Boussinesq Influence coefficients
Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Node		Nett	Wall	Wall	Shear	Bending	Prop
<u>no.</u>	<u>coord</u>	pressure	<u>disp.</u>	rotation	force	moment	forces
1	0 5 0	kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	0.50	0.00	0.074	3.69E-02	20.0	0.0	20.0
2	0.35	0.00	0.068	3.68E-02	20.0	3.0	
3	0.20	0.00	0.063	3.66E-02	20.0	6.0	
4	0.00	0.00	0.056	3.59E-02	20.0	10.0	
5	-0.20	1.30	0.048	3.49E-02	20.1	14.0	
6	-0.40	2.68	0.042	3.36E-02	20.5		
7	-0.60	3.96	0.035	3.20E-02	21.2	22.2	
8	-0.80	5.18	0.029	3.00E-02	22.1	26.6	
9	-1.00	6.38	0.023	2.76E-02	23.3	31.1	
10	-1.20	7.56	0.018	2.49E-02	24.7	35.9	
11	-1.35	8.43	0.014	2.25E-02	25.9	39.7	
12	-1.50	9.30	0.011	2.00E-02	27.2	43.7	
		-117.57	0.011	2.00E-02	27.2	43.7	
13	-1.65	-119.18	0.008	1.72E-02	9.4	46.4	
14	-1.80	-120.79	0.006	1.44E-02	-8.6	46.4	
15	-2.00	-89.13	0.003	1.07E-02	-29.6	43.0	
16	-2.20	-26.27	0.001	7.54E-03	-41.1	35.3	
17	-2.40	14.95	0.000	5.01E-03	-42.2	26.6	
18	-2.60	28.84	-0.001	3.16E-03	-37.9	18.6	
19	-2.80	36.97	-0.001	1.93E-03	-31.3		
20	-3.00	42.26	-0.001	1.21E-03	-23.4	6.0	
21	-3.20	46.03		8.73E-04	-14.5		
22	-3.35	48.43	-0.002	7.87E-04	-7.4	0.6	
23	-3.50	50.73	-0.002	7.69E-04	0.0	-0.0	

Run ID. RV	∛01_1 - 5r	n_impactload
RW01_1.5m	impact	load
1 Harry's	Place,	Kawakawa

n_impactload | Sheet No. load | Date:21-05-2024 Kawakawa | Checked :

(continued)

		LEFT side						
				Effectiv	e stresse	S	Total	Coeff. of
Node	Y	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	coord	press.	-al	limit	limit	pressure	pressure	reaction
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	0.00	0.00	0.00	4885
5	-0.20	0.00	3.85	1.30	12.13	1.30	1.30a	4885
6	-0.40	0.00	7.92	2.68	24.95	2.68	2.68a	4885
7	-0.60	0.00	11.71	3.96	36.85	3.96	3.96a	4885
8	-0.80	0.00	15.32	5.18	48.24	5.18	5.18a	4885
9	-1.00	0.00	18.86	6.38	59.37	6.38	6.38a	4885
10	-1.20	0.00	22.34	7.56	70.34	7.56	7.56a	4885
11	-1.35	0.00	24.93	8.43	78.50	8.43	8.43a	4885
12	-1.50	0.00	27.51	9.30	86.62	9.30	9.30a	4885
		Total>	27.51	7.50m	146.46	7.50	7.50a	16273
13	-1.65	Total>	30.23	8.25m	148.83	8.25	8.25a	16273
14	-1.80	Total>	32.94	9.00m	151.20	9.00	9.00a	16273
15	-2.00	Total>	36.54	10.00m	154.35	10.00	10.00a	16273
16	-2.20	Total>	40.13	11.00m	157.49	11.00	11.00a	16273
17	-2.40	Total>	43.72	12.00m	160.62	21.64	21.64	14864
18	-2.60	Total>	47.29	13.00m	163.74	34.34	34.34	14864
19	-2.80	Total>	50.86	14.00m	166.86	43.47	43.47	14864
20	-3.00	Total>	54.43	15.00m	169.98	49.76	49.76	14864
21	-3.20	Total>	57.99	16.00m	173.10	54.53	54.53	14864
22	-3.35	Total>	60.67	16.75m	175.43	57.68	57.68	14864
23	-3.50	Total>	63.33	17.50m	177.76	60.73	60.73	14864

Stage No.3 Apply load no.1 at elevation 0.50

					RIGHT	side		
				Effectiv	e stresse		Total	Coeff. of
Node	Y	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	coord	press.	-al	limit	limit	pressure	pressure	reaction
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	-0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	-0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	-0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	-1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	-1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.0
12	-1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		Total>	0.00	0.00	125.07	125.07	125.07p	35764
13	-1.65	Total>	2.70	0.75m	127.43	127.43	127.43p	35764
14	-1.80	Total>	5.40	1.50m	129.79	129.79	129.79p	35764
15	-2.00	Total>	9.00	2.50m	132.94	99.13	99.13	35764
16	-2.20	Total>	12.60	3.50m	136.08	37.27	37.27	35764
17	-2.40	Total>	16.20	4.50m	139.23	6.69	6.69	14864
18	-2.60	Total>	19.80	5.50m	142.37	5.50	5.50a	14864
19	-2.80	Total>	23.40	6.50m	145.52	6.50	6.50a	14864
20	-3.00	Total>	27.00	7.50m	148.67	7.50	7.50a	14864
21	-3.20	Total>	30.61	8.50m	151.81	8.50	8.50a	14864
22	-3.35	Total>	33.31	9.25m	154.17	9.25	9.25a	14864

Run ID. RW01 1-5m impactload	Ι	Sheet No.
RW01_1.5m_impact load		Date:21-05-2024
1 Harry's Place, Kawakawa		Checked :

(continued)

Stage No.3 Apply load no.1 at elevation 0.50

					RIGHT	side		
			Effective stresses Total Co					
Node	Y	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	coord	press.	<u>-al</u>	<u>limit</u>	<u>limit</u>	pressure	pressure	<u>reaction</u>
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
23	-3.50	Total>	36.01	10.00m	156.53	10.00	10.00a	14864

Note: 10.00a Soil pressure at active limit 129.79p Soil pressure at passive limit

HAIGH WORKMAN LTD	Sheet No. Job No. 24 077
Program: WALLAP Version 6.06 Revision A52.B71.R56	JOD NO. 24 0//
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01 1-5m impactload	
RW01 1.5m impact load	Date:21-05-2024
1 Harry's Place, Kawakawa	Checked :

Summary of results

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -3.50		ev. for 1.000	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	0.00	-1.50	Cant.	4.828	-3.08	-1.98	0.48	L to R
2	0.00	-1.50	Cant.	4.406	-3.07	-2.01	0.51	L to R
3	0.00	-1.50	Cant.	1.234	-2.78	- 3.27	1.77	L to R

HAIGH WORKMAN LTD | Sheet No. Program: WALLAP Version 6.06 Revision A52.B71.R56 | Job No. 24 077 Licensed from GEOSOLVE | Made by : JMC Data filename/Run ID: RW01_1-5m_impactload | RW01_1.5m_impact load | Date:21-05-2024 1 Harry's Place, Kawakawa | Checked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall Analysis options

Soldier Pile width = 0.28m; spacing = 1.00m Passive mobilisation factor = 3.000 Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Bending moment, shear force and displacement envelopes

Node	e Y	Displac	cement	Bending	g moment	Shear f	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	0.50	0.074	0.000	0.0	-0.0	20.0	0.0
2	0.35	0.068	0.000	3.0	-0.0	20.0	0.0
3	0.20	0.063	0.000	6.0	-0.0	20.0	0.0
4	0.00	0.056	0.000	10.0	0.0	20.0	0.0
5	-0.20	0.048	0.000	14.0	0.0	20.1	0.0
6	-0.40	0.042	0.000	18.1	0.0	20.5	0.0
7	-0.60	0.035	0.000	22.2	0.0	21.2	0.0
8	-0.80	0.029	0.000	26.6	0.0	22.1	0.0
9	-1.00	0.023	0.000	31.1	0.0	23.3	0.0
10	-1.20	0.018	0.000	35.9	0.0	24.7	0.0
11	- 1.35	0.014	0.000	39.7	0.0	25.9	0.0
12	-1.50	0.011	0.000	43.7	0.0	27.2	0.0
13	-1.65	0.008	0.000	46.4	0.0	9.4	0.0
14	-1.80	0.006	0.000	46.4	0.0	0.6	-8.6
15	-2.00	0.003	0.000	43.0	0.0	0.0	-29.6
16	-2.20	0.001	0.000	35.3	0.0	0.0	-41.1
17	-2.40	0.001	0.000	26.6	0.0	0.0	-42.2
18	-2.60	0.001	-0.001	18.6	0.0	0.0	-37.9
19	-2.80	0.001	-0.001	11.6	0.0	0.0	-31.3
20	-3.00	0.001	-0.001	6.0	0.0	0.0	-23.4
21	-3.20	0.001	-0.002	2.2	0.0	0.0	-14.5
22	-3.35	0.001	-0.002	0.6	0.0	0.0	-7.4
23	-3.50	0.001	-0.002	0.0	-0.0	0.0	0.0

Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m	L	kN/m		kN/m	
1	4.2	-1.80	-0.0	0.35	6.5	-1.50	-4.0	-2.60
2	4.7	-1.80	-0.0	0.50	7.4	-1.50	-4.4	-2.60
3	46.4	-1.80	-0.0	-3.50	27.2	-1.50	-42.2	-2.40

Maximum and minimum displacement at each stage

Stage		Displac	ement		2
no.	maximum	elev.	minimum	elev.	Stage description
	m		m		
1	0.006	0.50	0.000	0.50	Excav. to elev1.50 on RIGHT side
2	0.007	0.50	0.000	0.50	Apply surcharge no.1 at elev. 0.00
3	0.074	0.50	-0.002	-3.50	Apply load no.1 at elev. 0.50

HAIGH WORKMAN LTD | Sheet No. Program: WALLAP Version 6.06 Revision A52.B71.R56 | Job No. 24 077 Licensed from GEOSOLVE | Made by : JMC Data filename/Run ID: RW01 2m static RW01 2m static | Date:22-05-2024 1 Harry's Place, Kawakawa | Checked : ------

Units: kN,m

INPUT DATA

SOIL PROFILE										
Stratum	Elevation of	Soil	types							
no.	top of stratum	Left side	Right side							
1	0.00	1 Retained fill c'=0	1 Retained fill c'=0							
2	-1.50	2 Retained fill	2 Retained fill							
3	-2.00	3 Residual Waipapa	3 Residual Waipapa							

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
()	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Retained	17.00	10000	0.500	NC	0.338	3.148	0.0d
	fill c'=0				(0.250)	(1.357)	(4.404)	
2	Retained	17.00	10000	0.500	OC	0.338	3.148	3.000d
	fill				(0.250)	(1.357)	(4.404)	
3	Residual	18.00	25000	0.500	OC	0.285	3.886	5.000d
	Waipapa				(0.250)	(1.238)	(4.998)	

Additional soil parameters associated with Ka and Kp

			parameters for Ka			parameters for Kp			
			Soil	Wall	Back-	Soil	Wall	Back-	
	Soil	type	friction	adhesion	fill	friction	adhesion	fill	
No.	Descripti	on	angle	coeff.	angle	angle	coeff.	angle	
1	Retained	fill c'=0	26.00	0.640	0.00	26.00	0.312	0.00	
2	Retained	fill	26.00	0.640	0.00	26.00	0.312	0.00	
3	Residual	Waipapa	30.00	0.631	0.00	30.00	0.305	0.00	

GROUND WATER CONDITIONS

GROOND WATER CONDITIONS								
Density of water = 10.00 kN/m3								
	Left side	Right side						
Initial water table elevation	-6.00	-6.00						

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure = Soldier Pile Wall Soldier Pile width = 0.30 m Soldier Pile spacing = 1.00 m Passive mobilisation factor = 3.00 Elevation of toe of wall = -4.80 Maximum finite element length = 0.25 m Youngs modulus of wall E = 8.7000E+06 kN/m2Moment of inertia of wall I = 3.9760E-04 m4/m run = 3.9760E-04 m4 per pile E.I = 3459.1 kN.m2/m runYield Moment of wall = Not defined

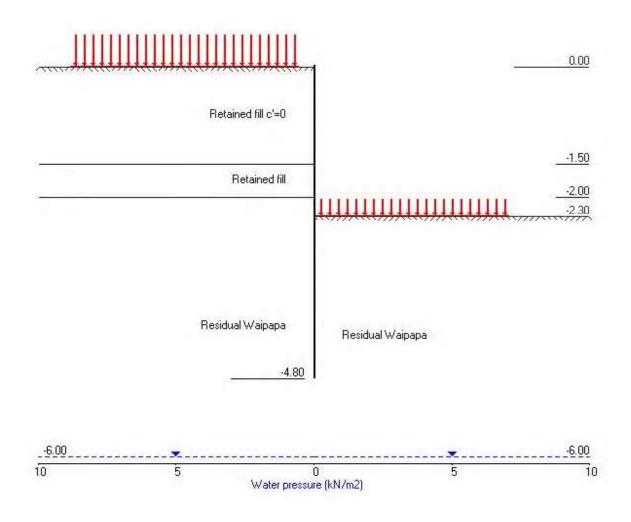
SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	0.00	0.20(L)	12.00	3.50	10.00	=	N/A	N/A
2	-2.30	-0.00(R)	12.00	3.00	5.40	=	N/A	N/A

Note: L = Left side, R = Right side

CONSTRUCTION S Construction stage no.	Stage description					
1 2 3						
FACTORS OF SAF	ETY and ANALYSIS OPTIONS					
	lysis: alysis – Strength Factor method il strength for calculating wall depth = 1.50					
Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m						
Bending moment and displacement calculation: Method – Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? – No Non-linear Modulus Parameter (L) = 0 m						
Boundary cond Length of wa	itions: ll (normal to plane of analysis) = 1000.00 m					
	avation on Left side of wall = 20.00 m avation on Right side of wall = 20.00 m					

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m


OUTPUT OPTIONS

Stage Stage description	Outpu	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Excav. to elev2.30 on RIGHT side	Yes	Yes	Yes
2 Apply surcharge no.1 at elev. 0.00	No	No	No
3 Apply surcharge no.2 at elev2.30	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2019 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56	Sheet No. Job No. 24 077
Licensed from GEOSOLVE	Made by : JMC
Data filename/Run ID: RW01 2m static	
RW01_2m_static	Date:22-05-2024
1 Harry's Place, Kawakawa	Checked :

Stage No.3 Apply surcharge no.2 at elev. -2.30

HAIGH WORKMAN LTD Program: WALLAP Version 6.06 Revision A52.B71.R56 Licensed from GEOSOLVE Data filename/Run ID: RW01_2m_static	Sheet N Job No. Made by 	24 077 : JMC
RW01_2m_static 1 Harry's Place, Kawakawa	Date:22 Checked	
	Units: kN,m	

Stage No. 3 Apply surcharge no.2 at elevation -2.30

STABILITY ANALYSIS of Soldier Pile Wall according to Strength Factor method Factor of safety on soil strength

		FoS for toe $elev. = -4.8$			Toe el FoS =			
	Ground Act.		Prop Elev.		Moment equilib.	<u>Toe</u> elev.	<u>Wall</u> Penetr	Direction of
3	0.00	-2.30	Cant.	<u>Safety</u> 1.516	at elev. -4.43	-4.76	<u>-ation</u> 2.46	<u>failure</u> L to R

BENDING MOMENT and DISPLACEMENT ANALYSIS of Soldier Pile Wall

Analysis options
Soldier Pile width = 0.30m; spacing = 1.00m
Passive mobilisation factor = 3.000
Length of wall perpendicular to section = 1000.00m
Subgrade reaction model - Boussinesq Influence coefficients
Soil deformations are elastic until the active or passive limit is reached

Rigid	boundaries:	Left	side	20.00	from	wall
		Right	side	20.00	from	wall

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	0.00	0.00	0.029	1.05E-02	0.0	-0.0	
2	-0.24	2.21	0.026	1.05E-02	0.3	0.0	
3	-0.48	4.52	0.024	1.05E-02	1.1	0.2	
4	-0.72	6.37	0.021	1.04E-02	2.4	0.6	
5	-0.96	8.03	0.019	1.04E-02	4.1	1.3	
6	-1.20	9.59	0.016	1.02E-02	6.2	2.6	
7	-1.35	10.53	0.015	1.01E-02	7.7	3.6	
8	-1.50	11.45	0.013	9.96E-03	9.4	4.9	
		7.38	0.013	9.96E-03	9.4	4.9	
9	-1.63	8.14	0.012	9.76E-03	10.3	6.1	
10	-1.75	8.89	0.011	9.51E-03	11.4	7.5	
11	-1.88	9.63	0.010	9.22E-03	12.6	9.0	
12	-2.00	10.37	0.008	8.86E-03	13.8	10.6	
		6.29	0.008	8.86E-03	13.8	10.6	
13	-2.15	7.10	0.007	8.35E-03	14.8	12.8	
14	-2.30	7.91	0.006	7.75E-03	16.0	15.1	
		-16.51	0.006	7.75E-03	16.0	15.1	
15	-2.47	-26.33	0.005	6.95E-03	12.3	17.5	
16	-2.64	-36.16	0.004	6.04E-03	7.0	19.3	
17	-2.88	-47.36	0.002	4.68E-03	-3.0	20.2	
18	-3.12	-24.41	0.001	3.35E-03	-11.6	18.2	
19	- 3.36	-6.86	0.001	2.21E-03	-15.4	14.7	
20	-3.60	4.20	0.000	1.33E-03	-15.7	10.8	
21	-3.84	10.51	0.000	7.11E-04	-13.9	7.1	
22	-4.08	13.87	-0.000	3.23E-04	-11.0	4.1	
23	-4.32	15.26	-0.000	1.19E-04	-7.5	1.8	
24	-4.56	15.74	-0.000	3.99E-05	-3.8	0.5	
25	-4.80	15.94	-0.000	2.40E-05	0.0	-0.0	