

Application for resource consent or fast-track resource consent

(Or Associated Consent Pursuant to the Resource Management Act 1991 (RMA)) (If applying for a Resource Consent pursuant to Section 87AAC or 88 of the RMA, this form can be used to satisfy the requirements of Schedule 4). Prior to, and during, completion of this application form, please refer to Resource Consent Guidance Notes and Schedule of Fees and Charges — <u>both available on the Council's web page</u>.

1. Pre-Lodgement Meeting		
Have you met with a council Resource Consent representative to discuss this application prior to lodgement? Yes No		
2. Type of Consent being applied for		
(more than one circle can be ticked):		
Land Use	Discharge	
Fast Track Land Use*	Change of Consent Notice (s.221(3))	
Subdivision	Extension of time (s.125)	
Consent under National Environmental Stand (e.g. Assessing and Managing Contaminants in S	lard oil)	
Other (please specify)		
* The fast track is for simple land use consents and is r	estricted to consents with a controlled activity status.	

3. Would you like to opt out of the Fast Track Process?

Yes No

4. Consultation

Have you consulted with lwi/Hapū? 🔵 Yes 🔵 No		
If yes, which groups have you consulted with?		
Who else have you consulted with?		

For any questions or information regarding iwi/hapū consultation, please contact Te Hono at Far North District Council <u>tehonosupport@fndc.govt.nz</u>

5. Applicant Details

Name/s:

Email:

Phone number:

Postal address:

(or alternative method of service under section 352 of the act)

Tia and Raymon Ashby

6. Address for Correspondence

Name and address for service and correspondence (if using an Agent write their details here)

Name/s:	Steven Sanson - Sanson & Associates Limited	
Email:		
Phone number:		
Postal address: (or alternative method of service under section 352 of the act)		

* All correspondence will be sent by email in the first instance. Please advise us if you would prefer an alternative means of communication.

7. Details of Property Owner/s and Occupier/s

Name and Address of the Owner/Occupiers of the land to which this application relates (where there are multiple owners or occupiers please list on a separate sheet if required)

Name/s: **Property Address/** Location:

Postcode	049
	Portrodo

8. Application Site Details

Location and/or property street address of the proposed activity:

Name/s: Site Address/ Location:	
	Postcode
Legal Description:	Val Number:
Certificate of title:	

Please remember to attach a copy of your Certificate of Title to the application, along with relevant consent notices and/or easements and encumbrances (search copy must be less than 6 months old)

Site visit requirements:

Is there a locked gate or security system restricting access by Council staff? **Yes No**

Is there a dog on the property? Yes No

Please provide details of any other entry restrictions that Council staff should be aware of, e.g. health and safety, caretaker's details. This is important to avoid a wasted trip and having to rearrange a second visit.

9. Description of the Proposal:

Please enter a brief description of the proposal here. Please refer to Chapter 4 of the District Plan, and Guidance Notes, for further details of information requirements.

If this is an application for a Change or Cancellation of Consent Notice conditions (s.221(3)), please quote relevant existing Resource Consents and Consent Notice identifiers and provide details of the change(s), with reasons for requesting them.

10. Would you like to request Public Notification?

Yes No

11. Other Consent required/being applied for under different legislation

(more than one circle can be ticked):

- Building Consent Enter BC ref # here (if known)
- Regional Council Consent (ref # if known) Ref # here (if known)

National Environmental Standard consent Consent here (if known)

Other (please specify) Specify 'other' here

12. National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health:

The site and proposal may be subject to the above NES. In order to determine whether regard needs to be had to the NES please answer the following:

Is the piece of land currently being used or has it historically ever been used for an activity or industry on the Hazardous Industries and Activities List (HAIL) **Yes No Don't know**

Is the proposed activity an activity covered by the NES? Please tick if any of the following apply to your proposal, as the NESCS may apply as a result. **Yes No Don't know**

Subdividing land

- Changing the use of a piece of land
- Disturbing, removing or sampling soil
 Removing or replacing a fuel storage system

13. Assessment of Environmental Effects:

Every application for resource consent must be accompanied by an Assessment of Environmental Effects (AEE). This is a requirement of Schedule 4 of the Resource Management Act 1991 and an application can be rejected if an adequate AEE is not provided. The information in an AEE must be specified in sufficient detail to satisfy the purpose for which it is required. Your AEE may include additional information such as Written Approvals from adjoining property owners, or affected parties.

Your AEE is attached to this application **Yes**

13. Draft Conditions:

Do you wish to see the draft conditions prior to the release of the resource consent decision? () Yes () No

If yes, do you agree to extend the processing timeframe pursuant to Section 37 of the Resource Management Act by 5 working days? **Yes No**

14. Billing Details:

This identifies the person or entity that will be responsible for paying any invoices or receiving any refunds associated with processing this resource consent. Please also refer to Council's Fees and Charges Schedule.

Name/s: (please write in full) Tia and Raymon Ashby

Email:

Phone number:

Postal address:

(or alternative method of service under section 352 of the act)

The and Traymon Action	

Fees Information

An instalment fee for processing this application is payable at the time of lodgement and must accompany your application in order for it to be lodged. Please note that if the instalment fee is insufficient to cover the actual and reasonable costs of work undertaken to process the application you will be required to pay any additional costs. Invoiced amounts are payable by the 20th of the month following invoice date. You may also be required to make additional payments if your application requires notification.

Declaration concerning Payment of Fees

I/we understand that the Council may charge me/us for all costs actually and reasonably incurred in processing this application. Subject to my/our rights under Sections 357B and 358 of the RMA, to object to any costs, I/we undertake to pay all and future processing costs incurred by the Council. Without limiting the Far North District Council's legal rights if any steps (including the use of debt collection agencies) are necessary to recover unpaid processing costs I/we agree to pay all costs of recovering those processing costs. If this application is made on behalf of a trust (private or family), a society (incorporated or unincorporated) or a company in signing this application I/we are binding the trust, society or company to pay all the above costs and guaranteeing to pay all the above costs in my/our personal capacity.

Name: (please write in full)	Tia Ashby	
Signature:		Date
(signature of bill payer	MANDATORY	

15. Important Information:

Note to applicant

You must include all information required by this form. The information must be specified in sufficient detail to satisfy the purpose for which it is required.

You may apply for 2 or more resource consents that are needed for the same activity on the same form. You must pay the charge payable to the consent authority for the resource consent application under the Resource Management Act 1991.

Fast-track application

Under the fast-track resource consent process, notice of the decision must be given within 10 working days after the date the application was first lodged with the authority, unless the applicant opts out of that process at the time of lodgement. A fast-track application may cease to be a fast-track application under section 87AAC(2) of the RMA.

Privacy Information:

Once this application is lodged with the Council it becomes public information. Please advise Council if there is sensitive information in the proposal. The information you have provided on this form is required so that your application for consent pursuant to the Resource Management Act 1991 can be processed under that Act. The information will be stored on a public register and held by the Far North District Council. The details of your application may also be made available to the public on the Council's website, www.fndc.govt.nz. These details are collected to inform the general public and community groups about all consents which have been issued through the Far North District Council.

15. Important information continued...

Declaration

The information I have supplied with this application is true and complete to the best of my knowledge.

Name: (please write in full)		
Signature:		Date
	A signature is not required if the application is made by electronic means	

Checklist (please tick if information is provided)

- Payment (cheques payable to Far North District Council)
- A current Certificate of Title (Search Copy not more than 6 months old)
- Details of your consultation with lwi and hapū
- Copies of any listed encumbrances, easements and/or consent notices relevant to the application
- Applicant / Agent / Property Owner / Bill Payer details provided
- Location of property and description of proposal
- Assessment of Environmental Effects
- Written Approvals / correspondence from consulted parties
- Reports from technical experts (if required)
- Copies of other relevant consents associated with this application
- Location and Site plans (land use) AND/OR
- Location and Scheme Plan (subdivision)
- Elevations / Floor plans
- Topographical / contour plans

Please refer to Chapter 4 of the District Plan for details of the information that must be provided with an application. Please also refer to the RC Checklist available on the Council's website. This contains more helpful hints as to what information needs to be shown on plans.

Application for resource consent or fast-track resource consent

(Or Associated Consent Pursuant to the Resource Management Act 1991 (RMA)) (If applying for a Resource Consent pursuant to Section 87AAC or 88 of the RMA, this form can be used to satisfy the requirements of Schedule 4). Prior to, and during, completion of this application form, please refer to Resource Consent Guidance Notes and Schedule of Fees and Charges — <u>both available on the Council's web page</u>.

1. Pre-Lodgement Meeting		
Have you met with a council Resource Consent representative to discuss this application prior to lodgement? Yes No		
2. Type of Consent being applied for		
(more than one circle can be ticked):		
C Land Use	Discharge	
Fast Track Land Use*	Change of Consent Notice (s.221(3))	
Subdivision	Subdivision Extension of time (s.125)	
Consent under National Environmental Standard (e.g. Assessing and Managing Contaminants in Soil)		
Other (please specify)		
* The fast track is for simple land use consents and is re	estricted to consents with a controlled activity status.	

3. Would you like to opt out of the Fast Track Process?

Yes No

4. Consultation

Have you consulted with lwi/Hapū? 🔵 Yes 🔵 No		
If yes, which groups have you consulted with?		
Who else have you consulted with?		

For any questions or information regarding iwi/hapū consultation, please contact Te Hono at Far North District Council <u>tehonosupport@fndc.govt.nz</u>

5. Applicant Details

Applicant Details		
Name/s:		
Email:		
Phone number:	Work	Home
Postal address: (or alternative method of service under section 352 of the act)		Postcode

6. Address for Correspondence

Name and address for service and correspondence (if using an Agent write their details here)

Name/s:		
Email:		
Phone number:	Work	Home
Postal address: (or alternative method of service under section 352 of the act)		Postcode

* All correspondence will be sent by email in the first instance. Please advise us if you would prefer an alternative means of communication.

7. Details of Property Owner/s and Occupier/s

Name and Address of the Owner/Occupiers of the land to which this application relates (where there are multiple owners or occupiers please list on a separate sheet if required)

Name/s:	
Property Address/ Location:	
	Postcode

8. Application Site Details

Location and/or property street address of the proposed activity:

Name/s: Site Address/ Location:	
	Postcode
Legal Description:	Val Number:
Certificate of title:	

Please remember to attach a copy of your Certificate of Title to the application, along with relevant consent notices and/or easements and encumbrances (search copy must be less than 6 months old)

Site visit requirements:

Is there a locked gate or security system restricting access by Council staff? **Yes No**

Is there a dog on the property? Yes No

Please provide details of any other entry restrictions that Council staff should be aware of, e.g. health and safety, caretaker's details. This is important to avoid a wasted trip and having to rearrange a second visit.

9. Description of the Proposal:

Please enter a brief description of the proposal here. Please refer to Chapter 4 of the District Plan, and Guidance Notes, for further details of information requirements.

If this is an application for a Change or Cancellation of Consent Notice conditions (s.221(3)), please quote relevant existing Resource Consents and Consent Notice identifiers and provide details of the change(s), with reasons for requesting them.

10. Would you like to request Public Notification?

Yes No

11. Other Consent required/being applied for under different legislation

(more than one circle can be ticked):

- Building Consent Enter BC ref # here (if known)
- Regional Council Consent (ref # if known) Ref # here (if known)

National Environmental Standard consent Consent here (if known)

Other (please specify) Specify 'other' here

12. National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health:

The site and proposal may be subject to the above NES. In order to determine whether regard needs to be had to the NES please answer the following:

Is the piece of land currently being used or has it historically ever been used for an activity or industry on the Hazardous Industries and Activities List (HAIL) **Yes No Don't know**

Is the proposed activity an activity covered by the NES? Please tick if any of the following apply to your proposal, as the NESCS may apply as a result. **Yes No Don't know**

Subdividing land

- Changing the use of a piece of land
- Disturbing, removing or sampling soil
 Removing or replacing a fuel storage system

13. Assessment of Environmental Effects:

Every application for resource consent must be accompanied by an Assessment of Environmental Effects (AEE). This is a requirement of Schedule 4 of the Resource Management Act 1991 and an application can be rejected if an adequate AEE is not provided. The information in an AEE must be specified in sufficient detail to satisfy the purpose for which it is required. Your AEE may include additional information such as Written Approvals from adjoining property owners, or affected parties.

Your AEE is attached to this application **Yes**

13. Draft Conditions:

Do you wish to see the draft conditions prior to the release of the resource consent decision? () Yes () No

If yes, do you agree to extend the processing timeframe pursuant to Section 37 of the Resource Management Act by 5 working days? **Yes No**

14. Billing Details:

This identifies the person or entity that will be responsible for paying any invoices or receiving any refunds associated with processing this resource consent. Please also refer to Council's Fees and Charges Schedule.

Name/s: (please write in full) Tia and Raymon Asl

Email:

Phone number:

Postal address:

(or alternative method of service under section 352 of the act)

ia and Raymon Ashby		

Fees Information

An instalment fee for processing this application is payable at the time of lodgement and must accompany your application in order for it to be lodged. Please note that if the instalment fee is insufficient to cover the actual and reasonable costs of work undertaken to process the application you will be required to pay any additional costs. Invoiced amounts are payable by the 20th of the month following invoice date. You may also be required to make additional payments if your application requires notification.

Declaration concerning Payment of Fees

I/we understand that the Council may charge me/us for all costs actually and reasonably incurred in processing this application. Subject to my/our rights under Sections 357B and 358 of the RMA, to object to any costs, I/we undertake to pay all and future processing costs incurred by the Council. Without limiting the Far North District Council's legal rights if any steps (including the use of debt collection agencies) are necessary to recover unpaid processing costs I/we agree to pay all costs of recovering those processing costs. If this application is made on behalf of a trust (private or family), a society (incorporated or unincorporated) or a company in signing this application I/we are binding the trust, society or company to pay all the above costs and guaranteeing to pay all the above costs in my/our personal capacity.

15. Important Information:

Note to applicant

You must include all information required by this form. The information must be specified in sufficient detail to satisfy the purpose for which it is required.

You may apply for 2 or more resource consents that are needed for the same activity on the same form. You must pay the charge payable to the consent authority for the resource consent application under the Resource Management Act 1991.

Fast-track application

Under the fast-track resource consent process, notice of the decision must be given within 10 working days after the date the application was first lodged with the authority, unless the applicant opts out of that process at the time of lodgement. A fast-track application may cease to be a fast-track application under section 87AAC(2) of the RMA.

Privacy Information:

Once this application is lodged with the Council it becomes public information. Please advise Council if there is sensitive information in the proposal. The information you have provided on this form is required so that your application for consent pursuant to the Resource Management Act 1991 can be processed under that Act. The information will be stored on a public register and held by the Far North District Council. The details of your application may also be made available to the public on the Council's website, www.fndc.govt.nz. These details are collected to inform the general public and community groups about all consents which have been issued through the Far North District Council.

15. Important information continued...

Declaration

The information I have supplied with this application is true and complete to the best of my knowledge.

Name: (please write in full)	Tia Ashby
Signature:	-

Tia Ashby			
	Date	27/10/24	
ignature is not required if the application is made by electronic means			

Checklist (please tick if information is provided)

- Payment (cheques payable to Far North District Council)
- A current Certificate of Title (Search Copy not more than 6 months old)
- Details of your consultation with lwi and hapū
- Copies of any listed encumbrances, easements and/or consent notices relevant to the application
- Applicant / Agent / Property Owner / Bill Payer details provided
- Location of property and description of proposal
- Assessment of Environmental Effects
- Written Approvals / correspondence from consulted parties
- Reports from technical experts (if required)
- Copies of other relevant consents associated with this application
- Location and Site plans (land use) AND/OR
- Location and Scheme Plan (subdivision)
- Elevations / Floor plans
- Topographical / contour plans

Please refer to Chapter 4 of the District Plan for details of the information that must be provided with an application. Please also refer to the RC Checklist available on the Council's website. This contains more helpful hints as to what information needs to be shown on plans.

SANSON & ASSOCIATES LTD Planners & Resource Consent Specialists

Assessment of Environmental Effects (AEE)

Application for Resource Consent: Proposed new home at 184 Roma Road, Ahipara

Prepared for:Tia & Raymon AshbyPrepared by:Steven Sanson | Consultant Planner

1. APPLICANT & PROPERTY DETAILS

Applicant	Tia & Raymon Ashby
Address for Service	Sanson & Associates Limited PO Box 318 PAIHIA 0247
	C/O - Steven Sanson
	steve@sansons.co.nz 021-160-6035
Legal Description	Ahipara A8A1 Block
Certificate Of Title	337317
Physical Address	184 Roma Road, Ahipara
Site Area	2.8500ha
Owner of the Site	John Hepa Makimou Paitaia & Tia Kimberley Paitai-Ashby
District Plan Zone / Features	Rural Production [ODP] ; Maori Purpose - Rural
Archaeology	Nil known
NRC Overlays	Flooding
Soils	Class 2 and Class 4
Protected Natural Area	Nil
HAIL	Nil
Kiwi	Kiwi Present

<u>Schedule 1</u>

2. SUMMARY OF PROPOSAL

Proposal	To construct a new architecturally designed 362m ² home and 3-bay shed in the Rural Production Zone.	
Reason for Application	 of the Operative Far North District Plan: 8.6.5.1.1 Residential Intensity 8.6.5.1.3 Stormwater Management 8.6.5.1.4 Setback from Boundaries 12.3.6.1.1 Excavation / Filling in the Rural Production Zone There are no PDP rule breaches. The proposal overall is a Non-Complying Activity.	
Appendices	Appendix A – Record of Title & Maori Land Court Documents Appendix B – Architectural Drawings Appendix C – Engineering Report	
Consultation	Refer application form.	
Pre Application Consultation	Refer application form.	

3. INTRODUCTION & PROPOSAL

3.1 Report Requirements

This report has been prepared for Tia & Raymon Ashby in support of a land use consent application at 184 Roma Road, Ahipara.

The details of the site are provided in <u>Schedule 1</u> above and in the Record of Title found in **Appendix A**.

The application has been prepared in accordance with the provisions of Section 88 and the Fourth Schedule of the Resource Management Act 1991. This report serves as the Assessment of Environmental Effects required under both provisions.

The report also includes an analysis of the relevant provisions of the Operative Far North District Plan [**ODP**], the Proposed Far North District Plan [**PDP**], relevant Regional Planning documents, National Policy Statements and Environmental Standards, as well as Part 2 of the Resource Management Act 1991.

3.2 Proposal

The proposal seeks to construct an architecturally designed house that is 362m² in size. The house is proposed to include 4 bedrooms, open family, lounge, and kitchen, private study, laundry and bathroom areas.

A double garage is proposed to provide parking. The height of the proposed dwelling is 3.973m. A 108m², 3-bay shed is also proposed in the future.

Total building coverage on the site is 470m2 [12%]. Total impervious coverage including future pool and paving and driveway area is 1,271m² [32%].

The proposal is to be serviced by 3 x 25,000l new water storage tanks which will also provide stormwater attenuation. Wastewater is proposed to be managed via ETS Beds.

Figure 1 below outlines the proposed floor plan for the development.

Figure 1 – Proposed Scheme Plan [Source: Core Architecture]

Further details of the proposal as described above are provided in **Appendix B**. An Engineering Report and associated calculations are provided in **Appendix C**.

The proposal requires consent for numerous items, many of which arise from the fact that the site is not yet formally partitioned.

However, as this is a timing issue and for fullness, a complete consent has been sought considering the current record of title as the overall 'site' subject to assessment.

4. SITE & SURROUNDING ENVIRONMENT

The site is located at 184 Roma Road, Ahipara. The site is 2.8500ha in size and is Maori Freehold Land. Roma Road is sealed and two-way.

The applicant is currently going through the Maori Land Court process to partition a small portion off the site [4,047m²]. The details of this partition are outlined in **Appendix A**.

Whilst this partition is imminent, as it is not yet fully completed the 'site' under consideration remains that as outlined on the Record of Title.

Figure 2 – Site [Source: Prover]

The site already contains an existing dwelling, located to the southeastern corner of the site. The site is a mixture of grassed pasture and exotic / indigenous vegetation as shown in Figure 2.

In terms of topography, the site rises from Roma Road towards the existing dwelling. The Matatarahoa Stream runs along the western extent of the site.

Figure 3 – ODP Zoning [Source: Far North Maps]

The site is located within the Rural Production Zone under the Operative District Plan [ODP] as shown in <u>Figure 3</u>. The site is located within a Kiwi Present Zone as shown in <u>Figure 4</u>. Localised flooding occurs along the western extent of the site as shown in <u>Figure 5</u>.

Soils are a mixture of Class 2 and 3 across the property as per <u>Figure 6</u>. Under the Proposed District Plan [PDP], the site is zoned Maori Purpose – Rural as per <u>Figure 7</u>.

Figure 4 – Kiwi Density (Source: Far North Maps)

Figure 5 – Flooding (Source: NRC Local Maps)

Figure 6 – Soils (Source: Far North Maps)

Figure 7 – PDP Zone Maps (Source: Far North Maps)

The site is surrounded by various natural and physical features such as Whangatautia Mountain, Ahipara Gumlands, various pa sites, the local marae, and kohanga reo.

The site and surrounds are rural in nature which is mixed with maori freehold land and rural residential / lifestyle living.

5. ASSESSMENT OF RELEVANT RULES

5.1 Far North District Plan

An assessment of the relevant rules of the Far North District Plan has been undertaken below.

Rule	Standards	Assessment
Residential Intensity	Permitted – One unit per 12ha of land	The proposed dwelling will be the 2 nd on the site.
	Restricted Discretionary - One unit per 4ha of land Discretionary – One unit per 2ha of land	Non-Complying
	In all cases the land shall be developed in such a way that each unit shall have at least 2,000m ² for its exclusive use surrounding the unit plus a minimum of 1.8ha elsewhere on the property.	
Sunlight	Permitted - No part of any building shall project beyond a 45 degree recession plane as measured inwards from any point 2m vertically above ground level on any site boundary Restricted Discretionary – if	The proposal does not breach any sunlight planes. Complies

Table 1: Rural Production Zone Rule Assessment

	permitted standard breached	
Stormwater Management	Permitted - The maximum proportion of the gross site area covered by	Total impervious surfaces proposed is 32%
	buildings and other impermeable surfaces shall be 15%.	
	Controlled - The maximum proportion of the gross site area covered by buildings and other impermeable surfaces shall be 20%.	
Setback from Boundaries	Permitted - No building shall be erected within 10m of any site boundary;	The proposed dwelling is located within the 10m permitted setback.
	Restricted Discretionary – if permitted standard breached	Restricted Discretionary
Keeping of Animals		Not applicable
Noise		Residential activity Complies
Building Height	Permitted - The maximum height of any building shall be 12m.	The proposed dwelling will be less than 12m in height.
	Restricted Discretionary - The maximum height of any building shall be 15m.	Complies
Helicopter Landing Area		Not applicable

		Complies
Building Coverage	Permitted - Any new	Total building coverage
	building or	proposed in 12%.
	alteration/addition to an	Complies
	existing building is a	Compacs
	permitted activity if the	
	total Building Coverage of	
	a site does not exceed	
	12.5% of the gross site	
	area.	
	Controlled - Any new	
	building or	
	alteration/addition to an	
	existing building is a	
	controlled activity if the	
	total Building Coverage of	
	a site does not exceed	
	15% of the gross site area.	
Scale of Activities		Not applicable
Scale of Activities		Νοι αρριισαρίε
		Complies
Temporary Events		Not applicable
		Osmulias
Minor Residential Unit	Controlled - Minor	Complies Not applicable
	residential units are a	
	controlled activity in the	
	zone provided that:	Complies
	there is no more than one	
	minor residential unit per	
	site;	
	the site has a minimum	
	net site area of 5000m2	

the minor residential unit	
shares vehicle access	
with the principal	
dwelling;	
the separation distance of	
the minor residential unit	
is no greater than 30m	
from the principal	
dwelling.	

Table 2: District Wide Rule Assessment

Rule	Assessment
12.1 Landscape & Natural Features	Not applicable
	Complies
12.2 Indigenous Flora & Fauna	No clearance proposed.
	Complies
12.3 Soils & Minerals	Earthworks will be less than 5,000m ³ .
	The proposal involves 2m high retaining
	walls which are existing but are not
	consented.
	Restricted Discretionary
12.4 Natural Hazards	The dwellings are not within 20m of a
	dripline of naturally occurring or
	deliberately planted scrub, shrub,
	woodlot or forest.

	Complies
12.5 Heritage	Not applicable
	O smalle s
	Complies
12.7 Lakes, Rivers, Wetlands and the	Not applicable
Coastline	
	Complies
12.8 Hazardous Substances	Not applicable
	Complies
12.9 Renewable Energy & Energy	Not applicable
Efficiency	
	Complies
13 Subdivision	Not applicable
	Complies
14 Financial Contributions	No reserves are required.
	Complies
15 Transport	The proposal results in an additional 10
	traffic movements.
	Complies
	There is sufficient space for parking.

	Complies
	Both the access and vehicle crossing are considered suitable for the proposed dwelling, however if localised upgrades are required these can be undertaken in accordance with the relevant engineering standards.
	Complies
16 Signs and Lighting	No signage is required.
	Complies
17 Designations & Utility Services	Not applicable.
	Complies
18 Special Areas	Not applicable.
	Complies
19 GMO's	Not applicable.
	Complies

Overall, this combined application falls to be considered as a **'Non-Complying Activity'** under the ODP.

Clause 2(1)(d) of Schedule 4 of the RMA requires applicants to identify other activities of the proposal with the intention of capturing activities which need permission or licensing under other enactments. These are considered below.

5.3 Northland Regional Council Requirements

The relevant matter to consider in terms of the proposal is with respect to the matters under management of the Northland Regional Council.

The proposal has been assessed against the Proposed Regional Plan for Northland and no consents are considered to be required.

5.4 Proposed Far North District Plan 2022

The PDP has rules which have immediate legal effect for the following chapters:

Matter	Rule/Std Ref	Evidence
Hazardous Substances	Rule HS-R2 has	Not relevant as no such
	immediate legal effect	substances proposed.
	but only for a new	
	significant hazardous	Complies
	facility located within a	
	scheduled site and area	
	of significance to Māori,	
	significant natural area	
	or a scheduled heritage	
	resource.	
	HS-R5, HS-R6, HS-R9	
Heritage Area Overlays	All rules have	Not relevant.
	immediate legal effect	
	(HA-R1 to HA-R14)	Complies
	All standards have	
	immediate legal effect	
	(HA-S1 to HA-S3)	

	· · · ·	
Historic Heritage	All rules have	Not relevant.
	immediate legal effect	
	(HH-R1 to HH-R10)	Complies
	Schedule 2 has	
	immediate legal effect	
Notable Trees	All rules have	Not relevant.
	immediate legal effect	
	(NT-R1 to NT-R9)	Complies
	All standards have legal	
	effect (NT-S1 to NT-S2)	
	Schedule 1 has	
	immediate legal effect	
Sites and Areas of	All rules have	Not relevant.
Significance to Māori	immediate legal effect	
	(SASM-R1 to SASM-R7)	Complies
	Schedule 3 has	
	immediate legal effect	
Ecosystems and	All rules have	Not relevant.
Indigenous Biodiversity	immediate legal effect	
	(IB-R1 to IB-R5)	Complies
Activities on the	All rules have	Not relevant.
Surface of Water	immediate legal effect	
	(ASW-R1 to ASW-R4)	Complies

Farthworks	The following rules have	These standards can be
	The following fulles have	
	immediate legal effect:	imposed and required
		at time of EPA.
	EW-R12, EW-R13	
		Complies
	The following standards	
	have immediate legal	
	effect:	
	EW-S3, EW-S5	
Signs	The following rules have	Not relevant.
	immediate legal effect:	
	SIGN-R9, SIGN-R10	Complies
	All standards have	
	immediate legal effect	
	but only for signs on or	
	attached to a	
	scheduled heritage	
	resource or heritage	
	area	
Orongo Bay Zone	Rule OBZ-R14 has	Not relevant.
	partial immediate legal	
	effect because RD-1(5)	Complies
	relates to water	
Subdivision	Various subdivision	Not relevant.
	rules have legal effect.	
		Complies

6. NOTIFICATION ASSESSMENT

6.1 Public Notification

The table below outlines the steps associated with public notification insofar as it relates to s95 of the Act.

Table 4 – s95 Assessment

	1	
<u>Step 1</u>	Mandatory public notification in certain circumstances	
S95A(3)(a)	Has the applicant requested that the application be publicly notified?	No
S95A(3)(b)	Is public notification required under section 95C? (after a request for further information)	TBC
S95A(3)(c)	Has the application been made jointly with an application to exchange recreation reserve land under section 15AA of the Reserves Act 1977.	No
Step 2	if not required by step 1, public notification precluded in certa circumstances	ain
S95A(5)(a)	Is the application for a resource consent for 1 or more activities and each activity is subject to a rule or national environmental standard that precludes public notification?	No
S95A(5)(b)	 Is the application for a resource consent for 1 or more of the following, but no other, activities. (i) a controlled activity. (ii) a restricted discretionary, discretionary, or non-complying activity, but only if the activity is a boundary activity. 	No
<u>Step 3</u>	if not precluded by step 2, public notification required in certa circumstances	ain
S95A(7)(a) / (b)	Determine whether the application meets the criteria set out in Clause 8.	<u>TBC</u>
S95A(8)A	The application is for a resource consent for 1 or more activities, and any of those activities is subject to a rule or national environmental standard that requires public notification.	No

S95A(8)B	The consent authority decides, in accordance with s95D, that the activity will have or is likely to have adverse effects on the environment that are more than minor	TBC
<u>Step 4</u>	Public notification in certain circumstances	
S95A(9)	Determine whether special circumstances exist in relation to the application that warrant the application being publicly notified	Νο

The proposed development does not meet the tests for mandatory public notification, nor does it meet the tests for precluding public notification.

Therefore, an assessment of environmental effects is required to consider whether these matters should be further explored.

7. EFFECTS ON THE ENVIRONMENT

7.1 Effects That Must Be Disregarded

Effects on persons who are owners and occupiers of the land in, on, or over which the application relates, or of adjacent land must be disregarded when considering effects on the environment (s 95D(a)).

Those properties / persons are shown in <u>Table 5</u> and shown in <u>Figure 8</u> below.

Table 5 - Adjacent Persons

Figure 8 – Adjacent Persons [Source: Prover]

7.2 Written Approvals

No written approvals have been sought.

7.3 Effects That May Be Disregarded

Sections 95D(b) and 95E(2)(a) provide that when determining the extent of the adverse effects of an activity or the effects on a person respectively, a council 'may disregard an adverse effect if a rule or national environmental standard permits an activity with that effect'. This is known as the permitted activity baseline test.

The purpose of the permitted baseline test is to isolate and make effects of activities on the environment that are permitted by a plan or NES, irrelevant.

When applying the permitted baseline such effects cannot then be taken into account when assessing the effects of a particular resource consent application.

The baseline has been defined by case law as comprising non-fanciful (credible) activities that would be permitted as of right by the plan in question.

7.4 Existing Environment

The receiving environment is the environment upon which a proposed activity might have effects. It is permissible (and often desirable or necessary) to consider the future state of the environment upon which effects will occur, including:

- the future state of the environment as it might be modified by the utilization of rights to carry out permitted activities (refer above).
- the environment as it might be modified by implementing resource consents that have been granted at the time a particular application is considered, where it appears likely that those resource consents will be implemented.

The existing environment in this instance is characterized by the existing and legalized built development already located on site.

There are no known unimplemented consents in the environment.

7.5 Effects Assessment

The following assessment (refer <u>Table 6</u>) has been prepared in accordance with Section 88 and Schedule 4 of the Act which specifies that the assessment of effects provided should correspond with the scale and significance of the proposal.

The effects assessment is largely linked to the rules breached as well as any other matter that is considered relevant to the scope and context of the overall development.

The effects considered include positive effects associated with the proposed development.

Table 6 – Effect Assessment (Environment)

Item	Assessment Criteria	Comments
Positive Effects	Nil	The proposal will result in an additional house in the Ahipara community and there will be flow on effects in terms of economic growth and employment resulting from the construction of the dwelling. There are social benefits to the applicant in terms of providing a house for themselves and family. Cultural benefits include the appropriate development of maori freehold land and Papakainga type living.
Residential Intensity	11.1	The character and appearance of the proposed dwellings will be as shown in Appendix B . The dwelling is modern and architecturally designed and there are typically minimal effects when associated with a new build such as that proposed in terms of character and amenity. Siting and design has been undertaken so that occupants receive appropriate privacy and passive solar gain. The location of the dwelling is lower in topography then nearby dwellings. Other dwellings are sufficiently separated not to be impacted. The area of open space provided overall remains as 68% of the total site on completion of impervious surfaces and buildings. This remains a large component of the overall site and is commensurate with the surrounds. The location and design of vehicular access on the site are from Roma Road and are / can be designed / upgraded to meet Council standards. The additional dwelling is not expected to result in traffic effects.
		 Hours of operation will be residential in nature with no additional effects beyond this type of use. Similarly, noise generation will be of a similar standard. In terms of adequate provision of three waters, these will be provided on site in accordance with Appendix C. The site will be landscaped over time, but no formal conditions are sought or proposed in this respect. With respect to soils, the land is maori freehold land and is exempt from consideration under the National Policy Statement [NPS-HPL]. There are no effects on indigenous vegetation or fauna. The site is not within the Coastal Environment. Natural hazards are not of concern where development is proposed. The land is in maori freehold land and density is discounted in the Plan to support Papakainga housing. Effects are considered to be no more than minor.
----------------------------	-----------	--
Setback from Boundaries	8.6.5.3.4	The house on Ahipara A8C1 is on a much higher contour and given the design of the dwelling [less than 4m in height], single story and located on a lower contour. All other adjacent sites are either vacant or sufficiently separated from the dwelling. The proposal does not reduce the outlook or privacy of adjacent properties given these factors. The dwelling does not restrict visibility of access to users.

		 Planting will occur over time but as above this is not considered necessary to condition. The dwelling does not impact public enjoyment of esplanades, reserves or strips. The retaining walls do not generate any effects in terms of being setback from boundaries. Effects are considered to be less than minor.
Stormwater Management	11.3	 There are 13 relevant matters to assess which are all associated with the management of stormwater. The proposal can appropriately attenuated stormwater as required under the District Plan / Engineering Standards. This is proven via Appendix C. The solution proposed is to attenuate via tanks [x3] in a series. The last tank will slowly release water as required and then connect to the existing driveway swale. Provided the Engineering Report and associated drawings are adhered to, the effects of stormwater will be no more than minor.
Retaining Walls	Chapter 12.3	The existing retaining walls do not generate any known effects to persons or on the environment. They have been developed to provide a stable and level building platform for the proposed building. The effects are less than minor.

Effects Conclusion:

Having considered the relevant actual and potential effects associated with the development, it is considered that the proposed activity promotes effects that are no more than minor on the environment.

8. EFFECTS TO PEOPLE

8.1 Limited Notification

The table below outlines the steps associated with limited notification insofar as it relates to s95 of the Act.

Table 7 – s95 Assessment

<u>Step 1</u>	certain affected groups and affected persons must be notified	
S95B(2)(a)	Are there any affected protected customary rights groups?	No
S95B(2)(b)	Are there any affected customary marine title groups (in the case of an application for a resource consent for an accommodated activity)?	No
S95B(3)(a)	Is the proposed activity on or adjacent to, or may affect, land that is the subject of a statutory acknowledgement made in accordance with an Act specified in Schedule 11?	No
S95B(3)(b)	Is the person to whom the statutory acknowledgement is made is an affected person under section 95E?	No
<u>Step 2</u>	if not required by step 1, limited notification precluded in certain circumstances	
S95B(6)(a)	the application is for a resource consent for 1 or more activities, and each activity is subject to a rule or national environmental standard that precludes limited notification:	No
S95B(6)(b)	the application is for a controlled activity (but no other activities) that requires a resource consent under a district plan (other than a subdivision of land)	No
<u>Step 3</u>	If not precluded by step 2, certain other affected persons must be notified	
S95B(7)	In the case of a boundary activity, determine in accordance with <u>section 95E</u> whether an owner of an allotment with an infringed boundary is an affected person.	No

S95B(8)	In the case of any other activity, determine whether a person is an affected person in accordance with <u>section</u> <u>95E</u> .	Refer below
S95B(9)	Notify each affected person identified under subsections (7) and (8) of the application.	No
<u>Step 4</u>	Further notification in special circumstances	
S95B(10)	Determine whether special circumstances exist in relation to the application that warrant notification of the application to any other persons not already determined to be eligible for limited notification under this section (excluding persons assessed under <u>section 95E</u> as not being affected persons), and,— (a)if the answer is yes, notify those persons; and (b)if the answer is no, do not notify anyone else.	No

8.2 Affected Person Determination

As the proposed activity does not trigger mandatory limited notification, nor is it precluded, an assessment of potential affected persons must be undertaken.

The consent authority has discretion to determine whether a person is an affected person. A person is affected if an activity's adverse effects are minor or more than minor to them.

The potential effects of the proposal on adjacent landowners have been undertaken below in context of those parties outlined earlier in Section 7.

8.3 Effects on Persons Assessment

The proposal is not considered to result in any potential affected persons for the following reasons:

- There is no vegetation clearance required / proposed.
- The site can be serviced on site in terms of 3 waters. There are no offsite effects from this.
- There are no special features / resources that apply to the site.
- The proposal will result in residential end use in an area where residential use in a rural environment is typical.
- Effects to those persons are limited because of the design, scale and location of the dwelling.
- Persons would not be affected or implicated by the construction of an additional house.

9. STATUTORY CONTEXT

9.1 National Policy Statements & Plans

In terms of NPS' and NES' the following is provided:

- With respect to the National Environmental Standard Soil Contamination, the site is not HAIL.
- The site is not Coastal as per the Regional Policy Statement and therefore the New Zealand Coastal Policy Statement is not relevant.
- The site is within an urban area and is considered to be contributing to the outcomes outlined in the NPS Urban Development.
- The site has no wetlands attributed to it as defined in various planning documents. The NPS for Freshwater Management is not considered relevant.
- The site is subject to the NPS-HPL, however as specified maori land, there is an ability to develop highly productive land for the purpose of Papakainga development. Therefore, the NPS-HPL is attended to and not relevant.

9.2 Regional Policy Statement for Northland

Objective / Policy	Assessment
Integrated Catchment Management	Not relevant.
Region-Wide Water Quality	Not relevant.
Ecological Flows and Water Levels	Not relevant.
Indigenous Ecosystems & Biodiversity	Not relevant.
Enabling Economic Wellbeing	The proposal allows for various goods/services in the construction sector in Ahipara.

Table 8 – RPS Assessment

Economic Activities – Reverse Sensitivity and Sterilization	The proposal does not result in any reverse sensitivity or sterilization effects.
Regionally Significant Infrastructure	The proposal does not impact any regionally significant infrastructure.
Efficient and Effective Infrastructure	The proposal generally seeks to use existing on site infrastructure.
Security of Energy Supply	Power is already provided to the boundary of the site.
Use and Allocation of Common Resources	Not relevant.
Regional Form	The proposal does not result in any reverse sensitivity effects, or a change in a character or sense of place.
Tangata Whenua Role in Decision Making	Not relevant in this instance.
Natural Hazard Risk	Not relevant.
Natural Character, Outstanding Natural Features, Outstanding Natural Landscapes and Historic Heritage	Not relevant.

9.3 Far North District Plan Assessment

An assessment of the relevant objectives and policies associated with the Far North District Plan has been undertaken.

The relevant objectives and policies of the Plan are those related to the Rural Environment in general, and the Rural Production Zone. The general intent of the Rural Production Zone is revolved around land use compatibility and reverse sensitivity.

Table 9 - Rural Production Zone Objective / Policy Assessment

Objectives	Assessment
8.6.3.1 To promote the sustainable	The proposal seeks this outcome.
management of natural and physical	

resources in the Rural Production	
Zone.	
8.6.3.2 To enable the efficient use and	The proposed use is considered to be
development of the Rural Production	an efficient use of the landholding to
Zone in a way that enables people and	provide housing for social and
communities to provide for their	economic wellbeing of the owners.
social, economic, and cultural well	
being and for their health and safety.	
8.6.3.3 To promote the maintenance	The proposal seeks to maintain the
and enhancement of the amenity	amenity of the site and surrounds via
values of the Rural Production Zone to	the architecturally designed home.
a level that is consistent with the	
productive intent of the zone.	
8.6.3.4 To promote the protection of	These are not apparent on the site.
significant natural values of the Rural	
Production Zone.	
8.6.3.5 To protect and enhance the	Not applicable.
special amenity values of the frontage	
to Kerikeri Road between its	
intersection with SH10 and the urban	
edge of Kerikeri.	
8.6.3.6 To avoid, remedy or mitigate	Residential use is not incompatible
the actual and potential conflicts	with the surrounds.
between new land use activities and	
existing lawfully established activities	
(reverse sensitivity) within the Rural	
Production Zone and on land use	
activities in neighbouring zones.	
8.6.3.7 To avoid remedy or mitigate	As above.
the adverse effects of incompatible	
use or development on natural and	
physical resources.	
8.6.3.8 To enable the efficient	The residential use is considered to
establishment and operation of	be an activity that meets the
activities and services that have a	objective.
functional need to be located in rural	
environments.	
8.6.3.9 To enable rural production	Noted.
activities to be undertaken in the	
zone.	

Policy	Assessment
8.6.4.1 That the Rural Production	Housing is considered as an activity
Zone enables farming and rural	that meets the policy.
production activities, as well as a	
wide range of activities, subject to the	
need to ensure that any adverse	
effects on the environment, including	
any reverse sensitivity effects,	
resulting from these activities are	
avoided, remedied or mitigated and	
are not to the detriment of rural	
productivity.	
8.6.4.2 That standards be imposed to	Noted.
ensure that the off site effects of	
activities in the Rural Production Zone	
are avoided, remedied or mitigated.	
8.6.4.3 That land management	Refer Appendix C.
practices that avoid, remedy or	
mitigate adverse effects on natural	
and physical resources be	
encouraged.	
8.6.4.4 That the type, scale and	The dwelling proposed is considered
intensity of development allowed	to meet this policy.
shall have regard to the maintenance	
and enhancement of the amenity	
values of the Rural Production Zone to	
a level that is consistent with the	
productive intent of the zone.	
8.6.4.5 That the efficient use and	Noted.
development of physical and natural	
resources be taken into account in	
the implementation of the Plan.	
8.6.4.6 That the built form of	Not applicable.
development allowed on sites with	
frontage to Kerikeri Road between its	
intersection with SH10 and Cannon	
Drive be maintained as small in scale,	
set back from the road, relatively	
inconspicuous and in harmony with	
landscape plantings and shelter	
belts.	

8.6.4.7 That although a wide range of activities that promote rural productivity are appropriate in the Rural Production Zone, an underlying goal is to avoid the actual and potential adverse effects of conflicting land use activities.	There are no such conflicting uses.
8.6.4.8 That activities whose adverse effects, including reverse sensitivity effects, cannot be avoided remedied or mitigated are given separation from other activities.	Not relevant.
8.6.4.9 That activities be discouraged from locating where they are sensitive to the effects of or may compromise the continued operation of lawfully established existing activities in the Rural Production zone and in neighbouring zones.	Not relevant.

9.4 Proposed Far North District Plan

Section 88A(2) provides that "any plan or proposed plan which exists when the application is considered must be had regard to in accordance with section 104(1)(b)." This requires applications to be assessed under both the operative and proposed objective and policy frameworks from the date of notification of the proposed district plan.

In the event of differing directives between objective and policy frameworks, it is well established by case law that the weight to be given to a proposed district plan depends on what stage the relevant provisions have reached, the weight generally being greater as a proposed plan moves through the notification and hearing process. In Keystone Ridge Ltd v Auckland City Council, the High Court held that the extent to which the provisions of a proposed plan are relevant should be considered on a case by case basis and might include:

- The extent (if any) to which the proposed measure might have been exposed to testing and independent decision making;
- Circumstances of injustice; and
- The extent to which a new measure, or the absence of one, might implement a coherent pattern of objectives and policies in a plan.

In my view the PDP has not gone through the sufficient process to allow a considered view of the relevant objectives and policies. However, for fullness the relevant objectives and policies have been assessed below.

Objectives & Policies	Assessment
MPZ-O1 The viability of the Maori	The proposal does not impact this
Purpose Zone is ensured for future	objective.
generations	
MPS-O2 The Maori Purpose Zone	The proposal is consistent with this
enables a range of social, cultural, and	outcome.
economic development opportunities	
that support the occupation, use,	
development and ongoing relationship	
with ancestral land.	
MPZ-O3 Use and development in the	The proposal is supported by
Maori Purpose Zone reflects the	engineering assessment which
sustainable carrying capacity of the	concurs that an additional dwelling is
land and surrounding environment.	possible on the site.
MPZ-P1 Provide for the use and	Noted.
development of ancestral Māori land	
administered under Te Ture Whenua	
Māori Act 1993.	
MPZ-P2 Enable a range of activities on	Housing is considered to meet the
Māori land in the Māori Purpose zone	policy.
including marae, papakāinga,	
customary use, cultural and small-	
scale commercial activities where the	

Table 10 – PDP Maori Purpose Zone - Rural Assessment

advers	se effects can be avoided,	
remedied or mitigated.		
MPZ-P3 Provide for development on		The proposal meets the policy and
Māori land where it is demonstrated:		sub clauses as outlined in the report.
a.	it is compatible with	
	surrounding activities;	
b.	it will not compromise	
	occupation, development and	
	use of Māori land;	
с.	it will not compromise use of	
	adjacent land or other zones to	
	be efficiently and effectively	
	used for their intended	
	purpose;	
d.	it maintains character and	
	amenity of surrounding area;	
e.	it provides for community	
	wellbeing, health and safety:	
f.	it can be serviced by	
	onsite infrastructure or	
	reticulated infrastructure where	
	this is available: and	
ø	that any adverse effects can be	
5.	avoided remedied or	
	mitigated	
	Intigation.	
MPZ-F	P4 Manage land use	The proposal meets the policy and
and su	ubdivision to address	sub clauses as outlined in the report.
the eff	fects of the activity requiring	
resou	rce consent, including (but not	
limite	d to) consideration of the	
follow	ing matters where relevant to	
the application:		
a.	consistency with the scale.	
0.0	density, design and character	
	of the environment and	
	nurnose of the zone:	
h	the location scale and design	
ы.	of huildings and structures.	
_	the nositive affects resulting	
0.	from the economic social and	
	from the economic, social and	

	cultural wellbeing provided by
	the proposed activity.
d.	at zone interfaces:
	i. any setbacks, fencing,
	screening
	or landscaping required
	to address potential
	conflicts;
	ii. managing reverse
	sensitivity effects on
	adjacent land uses,
	including the ability of
	surrounding
	properties to
	undertake primary
	production activities in a
	rural environment;
e.	the adequacy and capacity of
	available or
	programmed development
	infrastructure to accommodate
	the proposed activity; or the
	capacity of the site to cater
	for on-
	site infrastructure associated
	with the proposed activity;
f.	the adequacy of
	roading infrastructure to
	service the proposed activity;
g.	managing natural hazards;
h.	any loss of highly productive
	land;
i.	adverse effects on areas
	with historic heritage and
	cultural values, natural
	features and landscapes,
	natural character or indigenous
	biodiversity values; and
j.	any historical, spiritual, or
	cultural association held
	by tangata whenua, with regard

to the matters set out in Policy
TW-P6.

Overall, and considering the above, the proposal is considered to be consistent with the objectives and policies of all <u>relevant</u> statutory documents.

10 PART 2 ASSESSMENT

10.1 Section 5 – Purpose of The Act

Section 5 in Part 2 of the Act identifies the purpose as being the sustainable management of natural and physical resources. This means managing the use of natural and physical resources in a way that enables people and communities to provide for their social, cultural and economic well-being which sustain those resources for future generations, protecting the life supporting capacity of ecosystems, and avoiding remedying or mitigating adverse effects on the environment.

It is considered that the proposal represents a sustainable use of existing resources that allow people and the community to provide for its social and economic wellbeing in a manner that mitigates adverse effects on the environment.

10.2 Section 6 – Matters of National Importance

In achieving the purpose of the Act, a range of matters are required to be recognised and provided for. This includes:

- a) the preservation of the natural character of the coastal environment (including the coastal marine area), wetlands, and lakes and rivers and their margins, and the protection of them from inappropriate subdivision, use, and development:
- b) the protection of outstanding natural features and landscapes from inappropriate subdivision, use, and development:

- c) the protection of areas of significant indigenous vegetation and significant habitats of indigenous fauna:
- d) the maintenance and enhancement of public access to and along the coastal marine area, lakes, and rivers:
- e) the relationship of Maori and their culture and traditions with their ancestral lands, water, sites, waahi tapu, and other taonga:
- f) the protection of historic heritage from inappropriate subdivision, use, and development:
- g) the protection of protected customary rights:
- h) the management of significant risks from natural hazards.

In context, the relevant items to the proposal and have been recognised and provided for in the design of the development. The proposal also directly relates to 6[e].

10.3 Section 7 – Other Matters

In achieving the purpose of the Act, a range of matters are to be given particular regard. This includes:

- (a) kaitiakitanga:
- (aa) the ethic of stewardship:
- (b) the efficient use and development of natural and physical resources:
- (ba) the efficiency of the end use of energy:
- (c) the maintenance and enhancement of amenity values:
- (d) intrinsic values of ecosystems:
- (e) [Repealed]
- (f) maintenance and enhancement of the quality of the environment:
- (g) any finite characteristics of natural and physical resources:

(h) the protection of the habitat of trout and salmon:

(i) the effects of climate change:

(j) the benefits to be derived from the use and development of renewable energy.

These matters have been given particular regard through the design of the proposal.

10.4 Section 8 – Treaty of Waitangi

The Far North District Council is required to take into account the principles of the Treaty of Waitangi when processing this consent. This consent application may be sent to local iwi and hapū who may have an interest in this application.

10.5 Part 2 Conclusion

Given the above, it is considered that the proposal meets the purpose of the Act.

11. CONCLUSION

A Non-Complying Activity resource consent is sought from the Far North District Council to carry out the proposed development.

The proposal is not precluded from public notification and is considered to have less than minor effects on the wider environment. Through assessment, there are considered to be no affected persons.

The proposal is consistent with the objectives and policies of the Far North District Plan [ODP and PDP], the Regional Policy Statement for Northland, and achieves the purpose of the Act.

Given the assessment carried out in this report, it is considered that this proposal can be determined non-notified under the RMA 1991.

We would appreciate the review of draft conditions when available.

Regards,

Steven Sanson Consultant Planner

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD

Guaranteed Search Copy issued under Section 60 of the Land Transfer Act 2017

R.W. Muir Registrar-General of Land

Identifier337317Land Registration DistrictNorth AucklandDate Issued20 February 2007

Prior References 79046

Estate	Fee Simple			
Area	2.8500 hectares more or less			
Legal Description	Ahipara A8A1 Block			
Registered Owners				
John Hepa Makimou Paitai as to a 0.8580000000 share				
Tia Kimberly Paitai-Ashby as to a 0.1420000000 share				

Interests

The proprietors listed above hold the shares out of a total of 1 shares.

7239747.1 Status Order determining the status of the within land to be Maori Freehold Land - 20.2.2007 at 9:00 am 9921418.2 Maori Land Court laying out a restricted roadway over part marked B on ML 316582 - 8.12.2014 at 2:40 pm Appurtenant hereto is restricted roadway rights created by Maori Land Court Order 9921418.2 - 8.12.2014 at 2:40 pm Subject to a right to convey electricity, telecommunications and computer media and drainage and water rights over part marked F on ML 426522 created by Maori Land Court Order 9921418.3 - 8.12.2014 at 2:40 pm

Report on Maori Land details for the following Record(s) of Title

Record(s) of Title 337317

Identified as potentially Maori Freehold Land

*** End of Report ***

PARTITION ORDER

Te Ture Whenua Māori Act 1993, Sections 289 and 304(2)

In the Māori Land Court of New Zealand Taitokerau District

IN THE MATTER of the partition of the land known as Ahipara A8A1 being all that land described in Record of Title 337317, North Auckland Land Registration District

At a sitting of the Court held at Kaitaia via zoom on the 23rd day of November 2022 before Miharo Peter Armstrong, Judge

<u>IT IS</u>, as a part of the said partition of Ahipara A8A1 Block, <u>HEREBY ORDERED AND</u> <u>DECLARED</u> in satisfaction of all her shares held that Tia Kimberley Paitai Ashby is the owner of Ahipara A8A1A block containing 4047m², and which part is particularly delineated on ML599808 plan attached hereto

AND IT IS HEREBY FURTHER ORDERED that this land is subject to the restrictions imposed by Section 304 of Te Ture Whenua Māori Act 1993

AS WITNESS the hand of the Judge and the Seal of the Court

2

<u>Plan</u>

AP-20230000028177 | A20220007934

Title Plan - ML 599808

Survey Number	ML 599808			
Surveyor Reference	17367 Tia Ashby LP SB			
Surveyor	Richard Michael Smales			
Survey Firm	Reyburn & Bryant 1999 Ltd			
Surveyor Declaratio	n			
Survey Details				
Dataset Descriptio	n Ahipara A8A1A and A8A1B B	Blocks		
Status	Initiated			
Land District	North Auckland	Survey Class	Class B	
Submitted Date		Survey Approv	al Date	
		Deposit Date		
	ies			
Territorial Authorit Far North District	ies			
Territorial Authorit Far North District	ies			
Territorial Authorit Far North District Comprised In	ies			
Territorial Authorit Far North District Comprised In RT 337317	ies			
Territorial Authorit Far North District Comprised In RT 337317	ies			
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels	ies			
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels Parcels	ies	Parcel Intent	Area	RT Reference
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels Parcels Ahipara A8A1A Blo	ies ck Maori Land Plan 599808	Parcel Intent Maori	Area 0.3974 Ha	RT Reference
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels Parcels Ahipara A8A1A Blo Ahipara A8A1B Blo	ies ck Maori Land Plan 599808 ck Maori Land Plan 599808	Parcel Intent Maori Maori	Area 0.3974 Ha 2.5293 Ha	RT Reference
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels Parcels Ahipara A8A1A Blo Ahipara A8A1B Blo Area B Maori Land	ies ck Maori Land Plan 599808 ck Maori Land Plan 599808 Plan 599808	Parcel Intent Maori Maori Easement	Area 0.3974 Ha 2.5293 Ha	RT Reference
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels Parcels Ahipara A8A1A Blo Area B Maori Land I Area F Maori Land I	ies ck Maori Land Plan 599808 ck Maori Land Plan 599808 Plan 599808 Plan 599808	Parcel Intent Maori Maori Easement Easement	Area 0.3974 Ha 2.5293 Ha	RT Reference
Territorial Authorit Far North District Comprised In RT 337317 Created Parcels Parcels Ahipara A8A1A Blo Ahipara A8A1B Blo Area B Maori Land I Area F Maori Land I Area FA Maori Land	ies ck Maori Land Plan 599808 ck Maori Land Plan 599808 Plan 599808 Plan 599808 I Plan 599808	Parcel Intent Maori Maori Easement Easement Easement	Area 0.3974 Ha 2.5293 Ha	RT Reference

Schedule / Memorandum

Land Registration District

North Auckland

Plan Number

ML 599808

Territorial Authority (the council): Far North District Council

Schedule of Easements					
Purpose	Shown	Area	Burdened Land (Servient Tenement)	Benefitted Land (Dominant Tenement)	
Right of Way, Right to Convey Water, Electricity & Telecommunications	FA	0.0043 Ha	Ahipara A8A1B Block	Ahipara A8A1A Block	

Existing Restricted Roadway Maori Land Court Order 9921418.2				
Area	Shown	Burdened Land (Servient Tenement)	Benefitted Land (Dominant Tenement)	
0.0402 Ha	В	Ahipara A8A1B Block	Ahipara A8B Block & Ahipara A8A2 Block	

Schedule of Existing Easements Maori Land Court Order 9921418.3					
Purpose	Shown	Area	Burdened Land (Servient Tenement)	Benefitted Land (Dominant Tenement)	
Right to Convey Electricity Right to Convey	F	0.0452 Ha			
Computer Media Right to Convey Water	FA	0.0043 Ha	Апірага АбАТВ ВІОСК	Апірага АбА2 Віоск	

22-07-28 17367 Schedule v1

Page 1 of 1

PROPOSED DEVELOPMENT SCHEDULE

Legal Description:	Ahipara A8A1A Block ML 599808
Site Area:	0.3974 Ha.
Location:	184 Roma Road
	Ahipara

Wind Zone: Corrosion Zone:

Very High D

Territorial Authority: Far North District Council **Rural Production**

AREAS

Zone:

Total Floor area (over frame)294.80m²

BUILDING COVERAGE

Total Building Coverage	470m² (12%)
Future Shed	108m ²
(including eaves > than 600mm)	362m²
Proposed Building	

STORMWATER MANAGEMENT

Total Impermeable area	1271m² (32%)
Future Pool & Paving	90m ²
Future Shed	108m²
Driveway area	680m²
Roof area	393m²

SITE SERVICES Water supply

Sewerage Stormwater

from water storage tanks Provide Puretec water filter onsite wastewater disposal system Roof water to water tanks with detention, overflow to driveway swale drain

Drawing Title				Drawing Number
Locatio	n P	lan		R01
Scale		Plot Date	Project No.	
1:1000	@ A3	17/10/2024	2024-0653	Revision
D:\Core Architectural Desig	n Ltd\CADL	- Documents\000 Projects\2024\202	4-0653 Ashby\0653 Roma Road.pln	RC-01

All construction to NZS 3604:2011 and the Durapanel Technical Manual unless specifically designed Confirm all dimensions on site Internal door leaf size shown doors to be standard 1980mm high External joinery nominal sizes shown allow

denotes 80mmØ downpipe dp

Glazing to bathrooms to be Grade A Safety Glass as required by NZS 4223 Part 3:2016

Bathroom & Ensuite floors to be ceramic tiles over waterproof membrane. Laundry floor to be Ceramic tiles with less than 6% water absorbtion, waterproof grouted joints. Entry & Kitchen floor to be vinyl planks (Karndean or similar)

Drawing Title			Drawing Number
Floor Plan			R02
Scale	Plot Date	Project No.	
1:100 @ A3	17/10/2024	2024-0653	Revision
:\Core Architectural Design Ltd\CADL	RC-01		

Job Trite	Project Status
Proposed New Home for T. & R. Ashby	RC PLANS
184 Roma Road Ahipara	CORE ARCHITECTURAL DESIGN LTD PO Box 1006, Kerikeri 0245 Phone: +64 9 407 5999 Northland, New Zealand email: info@cadl.co.nz

Drawing Title			Drawing Number		
Elevations			R03		
Scale		Plot Date	Project No.		
1:100	@ A3	17/10/2024	2024-0653	Revision	
D:\Core Architectural Design Ltd\CADL - Documents\000 Projects\2024/2024-0653 Ashby\0653 Roma Road.pln			RC-01		

Job Title	Project Status	Drawing Title			Drawing Number
At A	RC PLANS	Elevations		R04	
184 Roma Road		Scale 1:100 @ 43	Plot Date 17/10/2024	Project No. 2024-0653	Revision
Ahipara	Northland, New Zealand email: info@cadl.co.r	9 Z	L - Documents\000 Projects\2024\2024-	0653 Ashby\0653 Roma Road.pln	RC-01

SITE SUITABILITY REPORT

FOR

PROPOSED NEW DWELLING

AT

AHIPARA A8A1A BLOCK ML599808

184 ROMA ROAD

AHIPARA

FOR

TIA & RAYMON ASHBY

Job No: 21-154 (Superseded by job no 21-154E) Date: February 2022 This report: Revision 1: 13th September 2024:

Level 1 ANZ Bank Building 90 Kerikeri Road, Kerikeri, New Zealand

Revision 1 Overview – We have been engaged by the owner of the proposed development of 184 Roma road- Tia and Raymon Ashby (our client) to provide an update to our existing site suitability report dated February 2022 (for Kevin Garton). Since the original report the site has been subdivided and the proposed dwelling now sits within a smaller lot - ML599808 A8AIA.

The owners Architect (Core Architectural Ltd) has provided updated site plans to support the revision to our documents for the proposed dwelling. This revision requires re-design and updates the Wastewater and Stormwater for the proposed dwelling. The brief for this update by the client has been to update the Wastewater and Stormwater sections and any other information required to support RC and BC consents.

Also noteworthy is the Architect has provided as-built earthworks contours for the building platform which we understand has been certified by another engineer.

The following updates to our report have been made:

Updated Client Name, across all documents and the following revisions:

Section 2: Revised the general description to fit with the as-built earthworks as seen on the architects and plans and our site measurements.

Section 5.3: We have provided 2 soakage tests and a shallow auger hole in order to revise our TP58.

Section 6: This foundation section has been updated to include the relevance of a rib-raft foundation type for the proposed dwelling.

Section 10: This section has been updated to include revised site coverage stormwater attenuation design using the proposed 3 water tanks.

Section 11: This section has been updated to include a new TP58 design for the proposed dwelling incorporating ETS beds.

Also Updated is Appendix A and includes- Auger log AH5 added and Revised Drawings and TP58 (Appendix E)

1. INTRODUCTION

This report was requested by Tia & Raymon Ashby and has been prepared to assess the suitability of Ahipara A8A1A Block ML 599808, 184 Roma Road, Ahipara for the proposed new dwelling.

This report assesses the AHIPARA A8A1 BLOCK regarding land stability, foundation requirements, ground retention requirements, wastewater treatment and disposal and stormwater flows and has been prepared for the sole use of our client. It shall not be used, reproduced, or copied in any manner or form without the permission of PK Engineering Limited.

2. GENERAL SITE DESCRIPTION

Ahipara A8A1A encompasses an area of approximately $3974m^2$ and is located at 184 Roma Road. The lot is covered in pasture used for grazing. A level building platform has been excavated resulting in an engineered embankment below the building platform sloping at ~ 14.5° to the northwest. The proposed new dwelling is located as indicated on the Location Plan Sheet SG1, Appendix A.

Locations of features and dimensions discussed in this report are taken from the site plan provided by Core Architectural limited and measurements taken on-site.

The subsurface conditions discussed in this report have been determined at very specific locations and will not identify any variations in ground strength or composition at other locations on the site. During construction should ground conditions be found to vary significantly from those described in this report, PK Engineering is to be notified immediately to confirm the applicability of the recommendations.

3. NATURAL HAZARDS

The Northland Regional Council, Hazard Maps indicate no Natural Hazards for this site.

<u>4. GEOLOGY</u>

Soil type, Kohumaru mottled loamy clay, which is a part of the Kohumaru soil suites, this soil is alluvial formed from a variety of volcanic and sedimentary parent material deposited by water. The basement rock type is an Interbedded sandstone and mudstone: grey quartz feldspar sandstone and grey mudstone, locally baked by interbedded basalt: moderately hard to hard, weathered inland to light coloured clay to depths of 10m. *NZMS 290, Sheet Q04/05, Ahipara- Herekino soil and rock maps.*

5. SITE INVESTIGATIONS

5.1 VISUAL INSPECTION

A thorough walkover of the proposed building site and surrounding slopes was undertaken and geotechnical features relating to site stability, wastewater disposal and stormwater flows were noted.

5.2 SUBSURFACE INVESTIGATIONS

Four subsurface exploratory auger holes were drilled at the locations shown on the attached plan as AH1 - AH4. In situ undrained shear strength readings were taken at regular intervals in each hole. These holes were drilled to a target depth of 3.0m or refusal due to impenetrability. Scala penetrometer tests were then undertaken from the base of the auger holes to a target depth of 5.0m below existing ground level or to termination where impenetrable ground was discovered.

Auger holes AH1 - AH4 all encountered variable, undisturbed silty clays with in-situ undrained shear strength varying from $58 \sim 203$ +kPa. All auger holes share similar soil characteristics, stiff yellow clay which is the product of weathering the underlain parent rock. The presence of grey laminations within AH4 and AH3 indicate possible water table presence although the water table was not encountered. Scala penetrometer tests were taken from the base of each auger hole (PT1 - PT4). All penetrometer test results indicate good ground at increasing depth between the base of the auger hole to termination depth. However, it must be noted that there are weak lenses of soil encountered in AH2- AH4.

Borehole	Auger Depth (m)	Scala Depth (m)	Weak Layer (m)	Rock Intercept (m)	GWL (m)
AH1	2.2	2.8	2.4	-	N/A
AH2	1.8	4.2	1.8-2.8	4.2	N/A
AH3	1.2	2.75	0.9-1.75, 2-2.2	2.55	N/A
AH4	1.6	2.8	-	2.8	N/A

Table 1 Data Summary

All depth measurements are beneath existing ground level. Groundwater table was not encountered.
Cross sections A - A & B - B shown on Sheet SG3 & SG4 in Appendix A give an illustration of the inferred sub-soil profile. The groundwater table was not intercepted during field investigations. The logs of these auger holes (AH) and Scala Penetrometer tests (PT) are given in Appendix A.

5.3 SOAKAGE TESTS & SOIL PROFILE BORE

2 soakage tests were conducted in the area of the revised proposed wastewater disposal field as per TP58 guidelines. One auger hole AH5 was bored to a depth of 1.8m, below existing ground level, in the area to establish the soil profile. Soakage tests and auger hole locations are shown on sheet SG2. We have classified the soil as a category 4 soil as per TP58 guidelines.

6. EXPANSIVITY / FOUNDATIONS

The soils that exist on this site are moderately to highly expansive in nature. Due to the nature of the expansive clays on this site, it cannot be classified as "good ground" as per NZS3604:2011.

All timber pile foundations should be founded a minimum of 1.0 metre into the stiff natural clay to avoid any susceptibility to expansive behaviours.

Alternatively, a rib-raft foundation structure may be employed, seated on top of a minimum of 150mm compacted GAP 20/40 Hardfill.

7. SITE STABILITY

The sub soils on this site vary, with strong bedrock located at 2.8~4.0m beneath existing ground level. AH1 & AH4 both encountered firm soil with shear vane readings all in excess of 100kPa to 2.2m and 1.6m below existing ground level respectively. Scala penetrometer readings for both holes encountered a small weak lens at 2.2~2.4m below existing ground level before encountering good ground. In AH1 encountered rock at 2.8m below existing ground level. AH2 encountered weak soil at 1.5~2.95m below existing ground level. Good ground was found in excess of 3.0m depth. AH3 encountered poor ground at 0.9~1.75m and 2.0~2.2m below existing ground level.

Careful consideration must be given to foundation designs and all soft lenses must be considered - i.e., foundations should be designed by a Chartered Professional engineer familiar with these geotechnical hazards.

7.2 BUILDING FOUNDATIONS

The following parameters should be utilized for the design of footings and piled foundations:

<u>IN STIFF CLAY:</u>	
Bulk Density	= 18 kN/m ³
Ultimate Bearing Capacity	= 300kPa
Allowable Bearing Capacity $(F.O.S = 3)$	= 100kPa
Dependable Bearing Capacity ($\phi = 0.5$)	= 150kPa
<u>IN WEAK CLAY:</u>	
Bulk Density	= 18 kN/m ³
Ultimate Bearing Capacity	= 150kPa
Allowable Bearing Capacity $(F.O.S = 3)$	= 50kPa
Dependable Bearing Capacity ($\phi = 0.5$)	= 75kPa
IN SEMI-WEATHERED BASALTIC ROCK:	
Bulk Density	= 25 kN/m ³
Ultimate Bearing Capacity	= 6MPa
Allowable Bearing Capacity $(F.O.S = 3)$	= 2MPa
Dependable Bearing Capacity ($\phi = 0.5$)	= 3MPa

7.3 CUT BATTER SLOPES

No cut batter on this site should be left either unretained or unvegetated to minimise the risk of soil instability. Ground cover must be maximised to maintain the upper clay layer in its natural state of moisture content.

7.4 FILL

AH4 has encountered a large layer of topsoil/clay mixture 0-0.9m below existing ground level. This layer is considered unsuitable fill and prior to construction must be removed.

Suitable clay fill may be placed around the building site to create the building platform provided that no foundations are supported onto this fill. This material should be rolled with a sheepsfoot roller to a minimum shear strength of 100kPa. Silty and sandy fill should not be placed around the building platform as such fill is highly erodible. All fill material under any slab or concrete foundation should be well compacted GAP 40 hardfill, verified by an engineer. This hardfill should extend a minimum of 1m past the edge of any concrete slab or footing. Fill batter slopes are to be a maximum of 1 in 2.5 gradient.

All bare exposed slopes, fill or cut batter, to be planted with suitable vegetation as soon as possible.

7.5 TOPSOIL AND UNSUITABLE SOILS

All topsoil, organics, vegetation, unapproved fill, and any soft layers/ lenses within the subsoils are to be stripped from any future building envelope and surrounding areas designated to be impermeable surfaces. All unsuitable materials where not recycled on site are to be carted to waste.

7.6 RETAINING WALLS

Any retaining of greater than 1.0m height or subject to surcharge loading (buildings, driveways or backslope exceeding 15°) should be designed by a suitably experienced Chartered Professional Engineer. Where applicable retaining walls are to provide support to cut faces.

8. LIQUEFACTION

Due to the known soil characteristics of Kohumaru mottled loamy clay and our site investigations, the risk of liquefaction is low. The low risk of liquefaction is due to the clay layer being very unlikely to have adequate saturation to be in a position to be prone to liquefaction. The topographic features of this site ensure rapid run off thus the occurrence of a perched ground water table is extremely unlikely.

The building envelope on Ahipara A8A1 meets the criteria for Section 71 of the Building Act 2004.

9. EROSION

Due to the gentle sloping nature of the site and stable ground conditions there is no evidence of erosion. There is no evidence of voids or cliff features. Underlying settlement and geological subsidence are unlikely. The proposed building envelope is sufficiently elevated, and setback form open water sources and is not subject to either fluvial or tidal erosion and as such has minimal impact as per Section 71 of the Building Act 2004.

10. STORMWATER

The careful management of stormwater runoff is vital to the continued stability of the proposed building platform. All stormwater flows should be piped away from any proposed building platform and steep slopes.

This site is zoned as Rural Production Zone under the Far North District Plan. In order to constitute a permitted activity, a maximum of 15% of the total site may be used for impermeable surfaces (roofs. driveway & sealed areas). The proposed dwelling roof area is $393m^2$, driveway area $680m^2$, future shed $108m^2$, future pool 90 m² giving total impermeable surfaces of $1271m^2 - 32\%$ of the total site area. This site therefore is outside of the permitted level of impermeable surfaces.

15% of the total site area is 596m². Proposed impermeable surfaces for this site amount to 1271m² We propose to attenuate stormwater flows from 675m²

utilising flows from the proposed dwelling and future shed roof for both a 10yr ARI and a 100yr ARI.

To accomplish the required attenuation the three proposed water storage tanks need to be linked in series. The last tank in the series to have a 10yr orifice of 47mm diameter set at 1.2m below the overflow invert and a 100yr. orifice of 58mm diameter set at 1.2m below the overflow invert. Refer Table 1 Attenuation Parameters below and accompanying drawing Sheet SG6 Appendix A. Both orifice to discharge to the 150mm diameter overflow pipe. The overflow pipe to discharge to the existing driveway swale. We have used NIWA HIRDS V4 data RCP6 for the period 2081-2100 and coefficients of 0.96 post-development and 0.65 pre-development.

	Orifice	diameter	Orifice invert location						
ARI 10	47	mm	1250	mm below overflow invert					
ARI 100	58	mm	600	mm below overflow invert					
Tank Size	3	x	25,000	litres @ 3.75mDia.					
ARI 10			21,794.3	litres					
ARI 100			27,304.5	litres					
Reuse			47,695.5	litres					

Table 1. Attenuation parameters

The careful management of stormwater runoff is vital to minimise downstream effects from the proposed development. During construction, silt fences and silt socks should be erected around the downhill perimeter of the construction site before any groundwork takes place to prevent silt migration off site or into waterways. No water is to be discharged on open cut slopes around the building envelope during construction.

Overflow from the water tanks to be discharged via a 150mm uPVC pipe to the existing driveway swale and thence to the Roma Road roadside swale via the easement area as indicated on the Location Plan, Sheet SG1, Appendix A.

11. WASTEWATER.

The soils that exist on this site exhibit moderate drainage characteristics. It has been classified as a category 4 type of earth as per the recommendations set by Technical Publication No. TP58. According to the minimum setback for a primary treated system under the TP58 guidelines, the following setback distances are to be used.

- 1.5m from the property boundary
- 3.0m from buildings
- 20.0m from surface water and openings
- 1.2m above the groundwater table
- 3.0m from the retaining walls
- 5.0m minimum from identified stormwater flow path downslope

A primary treatment system is suitable for this site.

We recommend using a dual chamber septic tank with outlet filter discharging, via a distribution box, to 4 evapotranspiration seepage beds (ETS Beds).

The ETS beds are to consist of 4 x 12.0m long x 0.5m wide x 0.45m deep with 1 m spacing between beds dug along contour see detail Sheet SG5 Appendix A. This design is based on a 4-bedroom dwelling with 6 person occupants using 180 litres per person/day giving a total wastewater production of 1080ltrs/day and a loading rate of 15ltrs/m²/day. The total enclosed area available for disposal is 72m². All construction should be undertaken by a licensed drainlayer. The total area of the disposal field to be planted with suitable plant species to provide Evapo-transpiration assistance see Appendix A, Plant Species List. All levels on site must be carefully checked to ensure that the pipe layout can be achieved prior to construction.

Refer Sheet SG5 and SG6 Appendix A for ETS beds layout and details.

12. WATER SUPPLY

Potable water supply will be provided by 3 x 25,000 litre water tanks either plastic or concrete partially buried catching rainwater from the dwelling roof. Overflow for the water tanks will be discharged via a 150mm uPVC pipe to the driveway swale drain. All works to comply with the Far North District Council Engineering Standards and Guidelines and the New Zealand Building Code G12: Water Supplies.

13. ACCESS

Access to the site is to be provided by a new accessway from Roma Road. The vehicle crossing is to be constructed as per the Far North District Council Engineering Standards and the Far North District Plan Clause 15.1.6C -Access. Sightlines from the proposed new entrance are 99m in both directions see Site Plan Appendix A. The driveway must comply with the maximum gradient set out in the Far North District Council Engineering Standards (2009) of 1 in 4 if sealed or 1 in 5 if unsealed. We recommend to seal the driveway due to the gradient and to minimise sediment runoff into the nearby stream on the. The driveway is to have a concrete swale drain constructed along the length of the driveway. The swale drains to discharge to the grass lined water channel along Roma Road. As illustrated on Site Plan Sheet SG2. Parking for the new dwelling must comply with the FNDC Standards which is a minimum of 2 parking spaces per residential dwelling unit.

14. <u>RECOMMENDATIONS</u>

I recommend that:

- Foundations to be designed by a suitably experienced Chartered Professional Engineer
- No foundations are to be supported onto any clay fill
- Any ground retaining required over 1.0m retained height or subject to surcharge loading (buildings, driveways or backslope exceeding 15°) to be designed by a suitably experienced Chartered Professional Engineer
- All earthworks are to be inspected and approved by an engineer. All hardfill over 600mm depth is to be inspected, tested, and approved by an engineer.
- Stormwater management to be as per section 10 of this report
- Wastewater treatment and disposal as per section 11 of this report.

10. CONCLUSION

This site is suitable for the proposed developments and a stable building platform can be made available provided that the recommendations in this report are followed diligently.

All foundation designs and retaining wall designs should be carried out by a Chartered Professional Engineer.

All Earthworks will need to be inspected and approved by a Chartered Professional Engineer.

Pradeep Kumar. B.E hons, NZCE, MIPENZ, IntPE, CP Eng. (Structural, Geotechnical) Chartered Professional Engineer.

APPENDIX A

•	AUGER	HOLE	LOGS
---	-------	------	------

- SCALA PENETROMETER LOGS
- SOAKAGE HOLE TESTS
- PS1 WASTEWATER
- TP58 APPENDIX E

•	LOCALITY PLAN	'SG1'
•	SITE PLAN	'SG2'
•	CROSS SECTION A-A	'SG3'
•	CROSS SECTION B-B	'SG4'
•	ETS BED LAYOUT	'SG5'
•	ETS BED DETAIL	'SG6
•	ATTENUATION TANKS DETAIL	'SG7'
•	SUITABLE PLANTS LIST	

APPENDIX A

Graphic		@@@		#####	%%%	ØØØ	±±±± ±		ÐÐÐÐÐ	In situ sł reading	near vane			
Symbol		FILL		CLAY	Remoulded shea LAY SILT SAND GRAVEL TOP Organic reading SOIL Soil Scale Penetrome									
Depth (mm)	Graphical Log	GWL	Soil Type			Field Descrip	otion		Undraine Strengt	d Shear n (kPa)	Scale Penetrometer (blows/300mm)			
					D	ry Brown Silty	Topsoil			200				
000	#####									200				
300	#####													
	#####					Martin	0		58	157				
600	#####					WOIST YEIIOW	Clay							
	#####								44 12	9				
900	##### #####													
500	#####									200				
	#####									200				
1200	#####				Orange Si	Ity Clay with G	rey Laminations	6						
	##### ######									200				
1500	#####								-					
	#####					Lighter Silty	Clay			200				
4000	#####								_					
1800	##### #####													
	#####				Moist Silty	Clay, Silt Cor	tent Increasing		30 115					
2100	#####	eq				-	-				•			
	#####	ept	lay				0.0		_		3			
2400		erc	уc		See	scala penetro	<u>2.2M</u> meter test		_					
2400		Int	am		066	Scala perietro			_		•			
		not	I Lo											
2700		vel	tlec											
		Le	Mot											
3000		iter	rul											
		Ň	ma											
	-	pur	nyo											
3300		irot	Ŷ											
		U												
3600														
2000														
3900	-													
4200														
4500														
4800														
4000														
5100														
5400														
Drill Meth	ods	50-100	mm han	d auger	Note:				1					
Test Loca	tion	Refer to	site pla	n	1. The sub	osurface data	described above	<u>e has been</u> d	etermined at a s	pecific borel	hole location. The data			
Test Date		23/12/2	021		will not	identify any va	riations away fr	om the locati	on.					
Inspector		RD		1.	2. UTP - L	Inable to pene	trate.	niles ni bla 🗖						
				Leve Telepho	г тап∠ валк ne: 09 407 32	Бининд 90 Ке 255 Fax: 09 40	7 3256 Email: T	eamPK@pk	engin.co.nz					

Graphic Symbol		@@@		#####	%%%	ØØØ	±±±±±		ÐÐÐÐÐ	In situ sh reading Remould	ear vane
		FILL		CLAY	SILT	SAND	GRAVEL	TOP SOIL	Organic Soil	reading Scale Pe	netrometer
Depth (mm)	Graphical Log	GWL	Soil Type			Field Descrip	otion		Undraine Strength	d Shear n (kPa)	Scale Penetrometer (blows/300mm)
						Topsoil			58	172	
300	##### #####				Т	opsoil Transit	to Clay			157	
600	##### #####								58	137	
000	##### #####									115	
900	##### #####				Ν	Noist Stiff Yello	w Clay		56		
	#####								72	109	
1200	##### #####								73		
1200	#####								87		
1500	##### #####				Moi	ist Stiff Yellow	Silty Clay				
1000	#####								78		
1800	##### #####				5	Soft Yellow Silt	y Clay				
					-	End of bore at	<u>1.8m</u>				
2100		ð			See	scala penetro	meter test		_		2
		epte	ilay								2
2400		terc	ny C								
		ot In	-oan								
2700		el ne	ed I								
		Lev	Aottl								
3000		Vater	iaru N								
2200		V pun	ohum								
3300		Gro	x								
3600											L
3900											
4200											
4500											
4800											
	1										
5100											
5400											
Drill Meth	ods	50-100	mm han	d auger	Note:						
Test Loca	tion	Refer to	site pla	n	1. The sub	osurface data	described above	e has been de	etermined at a sp	becific boreh	ole location. The data
Inspector		23/12/20 RD	JZI		2. UTP - I	Jnable to nene	trate.	on the locatio	ווע.		
				Leve	1 ANZ Bank	Building 90 Ke	erikeri Road, Ke	erikeri New Ze	aland		
				Telepho	ne: 09 407 32	255 Fax: 09 40	7 3256 Email: 1	FeamPK@pke	engin.co.nz		

Graphic		@@@		#####	%%%	ØØØ	#####		ÐÐÐÐÐ	In situ sh reading	ear vane
Symbol		FILL		CLAY	SILT	SAND	GRAVEL	TOP SOIL	Organic Soil	reading Scale Pe	netrometer
Depth (mm)	Graphical Log	GWL	Soil Type			Field Descrip	otion		Undrain Streng	ed Shear th (kPa)	Scale Penetrometer (blows/300mm)
						Dry Brown To	psoil			188	
300	#####				Dr	y Crumbly Yell	ow Clay		44		
300	#####								_	101	
	#####								44	101	
600	#####				N	Aoist Stiff Yello	w Clay				
	#####								30 58		
900	#####										
	#####			Mo	oist Stiff Yellov	v Clay with Gre	y/Orange Lami	nations	50 8	7	
1200	##### #####										•
1200						End of bore at	<u>1.2 m</u>				
4500					See	scala penetro	meter test				
1500											
1800											<u> </u>
	-										- X
2100	-	eq									
		ept	ilay								÷
2400	-	erc	νc								- L
2400		t Int	Dam								•
		not	d Lc								
2700	-	ivel	ttle								
		r Le	Мо								
3000		/ate	aru								
	-	N P	m								
3300		our	Koł								
		ē									
3600											
2000											
3900	-										
4200											
4500	-										
4800											
5100											
0.00	1										
5400 Drill Moth	ode	50-100	mm har	d auger	Neter						
Test Loca	tion	Refer to	site nla	n auger	1 The sul	hsurface data (described above	e has heen de	termined at a	specific horeb	ole location. The data
Test Date		23/12/20	021		will not	identify any va	riations away fr	om the locatio)n.		oro robution. The data
Inspector		RD			2. UTP - l	Jnable to pene	trate.				
				Leve Teleph	el 1 ANZ Bank	Building 90 Ke 255 Fax: 09 40	erikeri Road, Ke 7 3256 Email: 1	rikeri New Ze eamPK@nke	aland angin co nz		

Graphic		@@@		#####	%%%	ØØØ	#### #		ÐÐÐÐÐ	In situ sh reading Romoulo	hear vane
Gymbol		FILL		CLAY	SILT	SAND	GRAVEL	TOP SOIL	Organic Soil	reading Scale Pe	enetrometer
Depth (mm)	Graphical Log	GWL	Soil Type			Field Descri	otion		Undraine Strengt	d Shear n (kPa)	Scale Penetrometer (blows/300mm)
						Brown Silty To	opsoil		<u> </u>		
300					Topsoil a	nd Clay Mixtur	e, Slightly Moist		36 104		
600				Topso	oil and Clay Mi	xture with Mine	or Organics, Slig	ghtly Moist	30	186	
900	##### #####				Ν	loist Yellow Si	Ity Clay		44	172	
1200	##### %%%% %%%%				Mois	oist Orange Cl	ayey Silt		_		
1500	%%%%% ##### #####				Mo	ist Light Grey	Silty Clay			200	1
1500	##### %%%%				Мо	ist Crumbly O	range Silt				
1800	-				See	scala penetro	meter test				
0100											$\boldsymbol{<}$
2100		epter	lay								
2400		nterc	amy C								
0700		not	d Loa								
2700		Level	lottle								
3000		/ater	aru N								
		A pur	ohum								
3300		Grot	Ŷ								
3600											
3900											
4200											
4500											
4800											
5100											
E400											
Drill Metho	ods	50-100	mm han	d auger	Note:				1		
Test Loca	tion	Refer to	site pla	n	1. The sul	osurface data	described above	e has been d	etermined at a s	pecific borel	nole location. The data
Test Date		23/12/2	021		will not	identify any va	riations away fr	om the locati	on.		
Inspector		RĎ			2. UTP - L	Jnable to pene	trate.				
				Leve Teleph	ei 1 AN∠ Bank one: 09 407 32	виналд 90 Ке 255 Fax: 09 40	erikeri Road, Ke 7 3256 Email: T	rikeri New Ze eamPK@nke	ealand engin co nz		

BOREH	OLE LOG	6 NO -		AH5							
Project: design C Job No:	Soil Prot lient: T 21-154E	file waste ia & Ram	water on Ash	ıby					CHARTERED PR	DFESSIONAL ENGINEE	RB
Graphic Symbol		@ @@@@@@			####	000 00		++++		In situ shear vane reading Remoulded shear vane reading	
		FILL		CLAY	SILT	SAND	HARDFIL	TOP SOIL	Organic Soil	Scale Penetrometer	•
Depth (mm)	Soil /Rock Graphic al Log	Soil/Roc k type	GWL			Field Descrip	tion		Undrained Shear Strength (kPa)	Scale Penetrometer (blows/50mm)	
200				CLAY fill 250-300r	nm thick.				0 50 100 150 200 300 50 153	Ō	
300	++++++ ‡+++++ *			silty TOP	SOIL, browr	n moist			600 105	300	
600	·····								93	600	
900	·····			CLAY, mi	nor silt, yell	ow, plastic,	moist			900	
1200	·····								1200 90	1200	
1500				CLAY, mi	nor silt, yell	ow/white p	atches, moist	, soft	1500	1500	
1800	······								1800 75	1800	
			pe		EOB @1.8	m			2100	2100	
2100		ny clay	tercept						2400	2400	
2400		led loa	el not in						2700	2700	
2700		aru moti	ater leve						3000 UTP	3000	
3000		Kohume	sw bnuc						3300	3300	
3300		-	Gre						3600	3600	
3600										3900	
3900									3900	4200	
4200									4200	4500	
4500									4500	4800	
4800									4800	5100	
4000									5100	5400	
5100									5400	5700	
Drill Metho	ods		50 mm	hand auger	No	ote: All field	logging made	as per NZ	GS Guideline "Soil and	Rock Field Description	าร"
Test Loca	tion		Refer to	o site plan	1.	The subsurfac	e data described	above has	been determined at a speci	fic borehole location. The	data
Test Date			8/08/20	24	,	will not identify	any variations a	way from the	e location.		
Inspector			RD		2.	UTP - Unable 1	to penetrate.	Kowilson NI-	w Zoologd		
				L Tele	ever r AN∠ B phone: 09 40	анк винаing 90 7 3255 Fax: 09	о пелкел Road, 9 407 3256 Emai	il: TeamPK@	v ∠ealariu)pkengin.co.nz		

ΡK	EN	IGI	NE	ERI	NG	LIN	IITE	ED						PENE	TROM	ETER	HOLE	E No.	1 - 4
90 KEI	RIKER	RI RD		Phon	ie (09) 4	0732	55	EN	IAIL p	k.engir	n@xtr	a.co.n	z	SHT.	1 of	1			
Locati	Job No. 21-154																		
Driven	by: I	RD										-		Date:	23/12/	2021			
R.L at	Grou	nd Le	vel:	n/a					1	1	-	GWL	:		1	1			
Depth	PT1	PT2	PT3	PT4	Depth	PT1	PT2	PT3	PT4	Depth	PT1	PT2	PT3	PT4	Depth	PT1	PT2	PT3	PT4
50					2550	6	1	6	6	5050					7550				
100					2600	5	2	6	12	5100					7600				
150					2650	6	2	6	6	5150					7650				
200					2700	6	1	12	6	5200					7700				
250					2750	6	1	12	12	5250					7750				
300					2800	6	1		18	5300					7800				
350					2850		2			5350					7850				
400					2900		2			5400					7900				
450					2950		3			5450					7950				
500					3000		3			5500					8000				
550					3050		3			5550					8050				
600					3100		3			5600					8100				
650					3150		3			5650					8150				
700					3200		3			5700					8200				
750					3250		3			5750					8250				
800					3300		3			5800					8300				
850					3350		3			5850					8350				
900					3400		3			5900					8400				
950					3450		3			5950					8450				
1000					3500		3			6000					8500				
1050					3550		4			6050					8550				
1100					3600		-			6100					8600				
1150					3650		4			6150					8650				
1200					2700		4			6200					9700				
1200					3700		4			6250					0700				
1250			-		3750		4			6250					8750				
1300			0.5		3800		4			6300					8800				
1350			0.5		3850		4			6350					8850				
1400			0.5		3900		6			6400					8900				
1450			0.5		3950		6			6450					8950				
1500			1	-	4000		6			6500					9000				
1550			2	4	4050		6			6550					9050				
1600			2	4	4100		6			6600					9100				
1650			2	4	4150		6			6650					9150				
1700			2	4	4200		12			6700					9200				
1750		-	3	4	4250					6750					9250				
1800		1	3	4	4300					6800					9300				
1850		1	3	4	4350					6850					9350				
1900		1	4	4	4400					6900					9400				
1950		1	4	4	4450					6950					9450				
2000		1	2	6	4500					7000					9500				
2050		1	2	6	4550					7050					9550				
2100		1	2	6	4600					7100					9600				
2150		1	2	6	4650					7150					9650				
2200		1	2	4	4700					7200					9700				
2250		1	4	2	4750			İ	1	7250		1	1	1	9750	1	İ		1
2300		1	6	2	4800			1		7300					9800		1		
2350	-	1	6	6	4850			1		7350					9850		1		
2400	2	1	6	6	4900					7400	ļ				9900				
2450	4	2	6	6	4950					7450					9950				
2500	5	1	6	6	5000					7500	-				10000				
2000	5			5	0000		I	1		,000		1		1	10000		1	I	1

PRODUCER STATEMENT

DESIGN: ON-SITE EFFLUENT DISPOSAL SYSTEM (T.P.58)

ISSUED BY: <u>PRADEEP KUMAR</u> (Approved qualified design professional)

TO: <u>Tia and Raymon Ashby</u> (Owner)

TO BE SUPPLIED TO: FAR NORTH DISTRICT COUNCIL

PROPERTY LOCATION: 184 Roma Road Ahipara, AHIPARA A8A1A BLOCK ML599808

LOT: DP:

VALUATION NUMBER:

TO PROVIDE: Design an on-site effluent disposal system in accordance with Technical Publication 58 and provide a schedule to the owner for the system maintenance.

THE DESIGN: has been in accordance with G13 (Foul Water) G14 (Industrial Liquid Waste) B2 (durability 15 years) of the Building Regulations 1992.

As an independent approved design professional covered by a current policy of Professional Indemnity Insurance (Design) to a minimum value of \$2000,000.00,

I BELIEVE ON REASONABLE GROUNDS that subject to:

(1) The site verification of the soil types.

tunoz

(2) All proprietary products met the performance requirements.

The proposed design will meet the relevant provisions of the Building Code and 8.15 of The Far North District Council Engineering Standards.

(Signature of approved design professional)

BE hons, NZCE, MIPENZ, IntPE, CPEng (Professional Qualifications)

IPENZ No. 203058 (Licence Number or Professional Registration Number)

Address: Level 1 ANZ Bank Building, 90 Kerikeri Road, Kerikeri, New Zealand

Date:	September 2024
Telephone:	09 407 3255
Email:	teampk@pkengin.co.nz

On-site Wastewater Disposal Site Evaluation Investigation Checklist

PART A: CONTACT DETAILS

1. Applicant Details:

Applicant Name	Tia & Raymon Ashby
Company Name	n/a
Property Owners Name	(s) Tia & Ramon Ashby

Nature of Applicant* Owner

(* i.e. Owner, Lessee, Prospective Purchaser, Developer)

2. Consultant/Site Evaluator Details

Consultant/Agent Name	PK Enginee	PK Engineering Ltd				
Site Evaluator Name						
Postal Address	P O Box 464	4, Kerikeri.				
Phone Number	Business	09 4073255	Private			
	Mobile		Fax			
Name of Contact Person	PK	PK				
E-mail Address	teampk@pk	<u>engin.co.nz</u>				

OFFICE USE ONLY

3. Are there any previous existing discharge consents relating to this proposal or other waste discharge/disposal on the site?

yes		no			
if yes, give refere	ence numbers a	and description			

4. List any other consents in relation to this proposal site and indicate whether or not they have been applied for or granted.

If so, specify application details and consent No:

(e.g. Land use, Water intake, Subdivision, Earthworks, or Stormwater Consents)

PART B: PROPERTY DETAILS

1. Property for which this application relates:

Physical Address of Property	184 Roma Road, Ahipara
Territorial Local Authority	FAR NORTH DISTRICT COUNCIL
Regional Council	NORTHLAND REGIONAL COUNCIL

Legal Status of Activity	Permitted	Controlled	Discretionary
Relevant Regional Rules			
(Note 1)			
Total Property Area (m ²)	3,974		
Map Grid Reference of Property			
if known			

2. Legal description of land (as shown on Certificate of Tittle)

Lot No.		DP No.		CT No.		
	Ahipara A					
Other (specify) Ahipara A8A1						

Please ensure copy of Certificate of title is attached

PART C: SITE ASSESSMENT - SURFACE EVALUATION

(Refer TP58 - Sn 5.1 General Purpose of Site Evaluation and Sn 5.2.2(a) Site Surface Evaluation) Note: Underlined terms defined in Table 1, attached

1. Has a relevant property history study been conducted?

yes	no	

if yes please specify the findings of the history study, and if not please specify why this was not considered necessary.

Previously undeveloped site		

2. Has a Slope Stability Assessment been carried out on the property?

If No, why not? The site for wastewater disposal is gently sloping to north west at 10-12 degrees	yes	10			
The site for wastewater disposal is gently sloping to north west at 10-12 degrees	If No, why not?			-	
	The site for wastewa	ater disposal is gently	sloping to north wes	st at 10-12 degrees	
at the base of an engineered clay bund. Refer Auger hole log AH1 dated 8/08/2024	at the base of an en	gineered clay bund. F	Refer Auger hole log	AH1 dated 8/08/2024	

If yes, please give details of report (and if possible, please attach report):

Author	
Company/Agency	
Date of Report	

3. Site Characteristics (see table 1 attached):

Provide descriptive details below:

Performance of Adjacent Systems: Not established

Estimated Rainfall and Seasonal Variation:

Information available from N.I.W.A. MET RESEARCH

1200mm

Annual Rainfall:1800-2000mm	Annual Potential Evapotranspiration:
Typical sub-tropical climate - short duration	intense Rainfalls

Vegetation/Tree Cover: Pasture grass

Slope Shape: (please p	provide diagrams)						
Slope Angle: 8 - 10 deg	rees to the North-V	Nest in the are	a for waste	ewater di	sposal		
Surface Water Drainage	e Characteristics:						
No standing surface wat	er near area alloca	ted for dispose	al area				
Flooding Potential:	yes		no				
If yes, specify relevant flo	ood levels on appe	nded site plan,	i.e. 1 in 5	years an	d/or 20 yea	r and/or 10	00 year
return period flood level,	relative to disposa	l area.					
Surface Water Separat	ion:						
30m+							
Site Characteristics: or	r any other limitat	ion influencin	g factors				
NIL							

4. Site Geology

Check Rock Maps

Kohumaru Mottled Loamy Clay overlying interbedded sandstone and mudstone....

geological map reference number Department of Lands and Survey NZMS 290.

5. What Aspects does the proposed disposal system face?

North	West	
North-West	South-West	
North-East	South-East	
East	South	

6. Site Clearances, (Indicate on site plan where relevant) Check Council Requirements

Separation distance from	Treatment Separation Distance	Disposal Field Separation Distance
Boundaries	1.5m minimum	1.5m minimum
Surface Water, rivers,	20m minimum	20m minimum
creeks, drains etc.		
Groundwater		1.2m Minimum
Stands of Trees/Shrubs		
Wells, water bores	N/A	N/A
Embankments	3m minimum	3m minimum
/retaining walls		
Buildings	3m minimum	3m minimum
Other (specify)		
Identified stormwater flow path and channel) that is down-slop	i (including a formed road with kerb be of the disposal area	5m minimum

PART D: SITE ASSESSMENT - SUBSOIL INVESTIGATION

(Refer TP58 - Sn 5.1General Purpose of Site Surface Evaluation, and Sn 5.2.2(a) Site Surface Evaluation and Sn 5.3 Subsurface Investigations)

Note: Underlined Terms Defined in Table 2, attached

1. Please identify the soil profile determination method:

			ietnoù.		
Test Pit		Depth		m	No of test pits
Bore Hole		Depth	1.8	m	No of Bore
					Holes
Other (specify):					
Soil Report attached?					
ves		no			
2 Was fill material inte	ercepted durin	na the subsoi	Linvestigati	ion?	
VAS			rinvooligat		
If ves please specify t	he effect of th	e fill on wast	ewater disr		
Fill was intercented in	the area of th	e disposal fie	ald to a den	th of 0.2m. The fill is	remnants of the engineered
clay berm and is not a	vpected to ba	ve any offect		vator disposal i o fill	is not covering the disposal area
but rather in isolated p	Apecieu io na	ve any eneci	UT Waster	water uispusarit.e. iii	
but rather in isolated p	alches				
3. percolation testing (mandatory ar	nd site specifi	c for trench	nes an soil type 4 to	()
As per TP58 guideline	s for percolati	on tests			
test report attached?				_	
yes		no			
 are surface water in 	terception/div	ersion drains	s required?		
yes		no			
Shown on attached sit	e plan				
	•				
4a. Are subsurface dra	ains required				
Ves		no			
Shown on attached sit	e plan				
Chown on attached sit	e plan				
5 Plassa stata danth (of the season	al water table	·.		
Winter 1 8 +r			, d	Estimated	
	m	Measure	<u>d</u>	Estimated	4
		ivieasure	u		<u>u</u>
C Are there existen	tial atomasurate		it nothed		
 Are there any poten 	tial stormwate	er snort circu	it paths?		
yes		no		<u> </u>	
If the answer is yes, pl	ease explain	how these ha	ave been a	ddressed	
7. Based on the result	s of subsoil in	vestigation a	bove, pleas	se indicate the dispo	sal field soil category
(refer TP58 Table 5.1)					
. ,					
Is Topsoil Present?	ves	no	If so	. Topsoil Depth?	200 mm
		-		, <u> </u>	1
Soil Category	Descriptio	n			Drainage
1	Gravel Co	 arse sand			Ranid draining
2		nodium conc	1		Ereo draining
2	Loarse to medium sand				
3	Medium-fine and loamy sand				
4	Sandy loa	m, loam and	siit loam	· • •	Moderate drainage
5	Sandy clay	-Ioam, clay lo	am and sil	ty clay loam	Moderate to slow drainage
6	Sandy clay, non-swelling clay and silty clay			ISlow draining	

Poorly or non-draining

Reasons for placing in stated category results of bore holes and percolation tests.

Swelling clay, grey clay, hardpan

7

PART E: DISCHARGE DETAILS

1. Water supply source for the property:

Rainwater (roof collection)	Yes
Bore/well	
Public Supply	

2. Calculate the maximum daily volume of wastewater to be discharged, unless accurate water meter readings are available (Refer Table 6.1 & 6.2):

Number of Bedrooms	4	
Design Occupancy	6	(number of people)
Per capita Wastewater Production	180	(litres per person per day)
Other - Day Stuff working in the shed		
Total Daily Wastewater Production	1080	(litres per day)

3. Do you propose to install:

a) Full Water Conservation Devices?	Yes	No
b) Water Recycling - what %?	%	No

The disposal area is based on a 4 bedroom dwelling, total 6 persons (1080litres/day) using roof water tank supply type B water source for Households with standard fixtures.

4. Is Daily Wastewater Discharge Volume more than 2000 Litres:

no

if answer to above is yes, an NRC wastewater discharge permit may be required

5. Gross Lot Area to Discharge Ratio:

Gross Lot Area	3,974	m ²
Total Daily Wastewater Production	1080	(Litres per Day)
Lot Area to Discharge Ratio	3.68	

7. Does this proposal comply with the Northland Regional Council Gross Lot Area to Discharge Ratio of Greater than 3

On advice from Alysha, duty planner at NRC this question is redundant 18/03/2021

8. Is a Northland Regional Council Discharge Consent Required?

yes

PART F: PRIMARY TREATMENT (refer TP58 Section 7.2)

1. Please indicate below the no. and capacity (litres) of all septic tanks including type (single/dual chamber grease traps) to be installed or currently existing: if not 4500 dual chambered explain why not

in not 4000 daar onambered explain why not							
No. of Tanks	Type of Tank	Capacity of Tank (Litres)					
1	Primary dual chamber septic tank	4,500 Litres					
	Total Capacity						

2. Is a Septic Tank Outlet Filter to be Installed?

Orenco or similar

PART G: SECONDARY AND TERTIARY TREATMENT (refer TP58 Section 7.3, 7.4, 7.5 & 7.6)

1. Please indicate the type of additional treatment, if any, proposed to be installed in the system:

Secondary Treatment			
Home Aeration Plant			
Commercial Aeration Plant			
Intermediate Sand Filter			
Recirculating Sand Filter			
Recirculating Textile Filter			
Clarification Tank			
Tertiary Treatment			
Ultraviolet Disinfection			
Chlorination			
Other	Specify		

PART H: LAND DISPOSAL METHOD (refer TP58 Section 8)

1.Please indicate the proposed loading disposal method:

Gravity	
Dosing S	iphon
Pump	

2. Is a high water level alarm being installed in pump chambers?

yes	n/a	no	n/a		
if not to be instal	not to be installed, explain why				

3. If a pump is being used, please provide the following information:

Total Design Head	NA	(m)
Pump Chamber Volume	NA	(Litres)
Emergency Storage Volume	NA	(Litres)

4. Please identify the type(s) of land disposal method proposed for the site

(refer TP58 Sections 9 & 10)
Surface Dripper Irrigation
Sub-surface Dripper Irrigation
Standard Trench
Deep Trench
Mound
ETS Beds
Other (please specify)

5. Please Identify the loading rate you propose for the option selected in part H, Section 4 above stating reasons for selecting this loading rate:

Section 4 above stating reasons for selecting this loading rate.					
Loading Rate	Basal	15 (Litres/m²/day)			
	Areal	(Litres/m ² /day)			
Disposal Area	Design	72 (m ²)			

Reserve **72** (m²)

Explanation (Refer TP58 Sections 9 & 10)

Areal 15mm / day achievable for ETS beds with suitable closely spaced planting over

Conservative judgement with Catergory 4 soils

2.4m³ storage volume available for prolonged wet periods / heavy loadings

6. What is the available reserve wastewater disposal area (Refer TP58 Table 5.3)

Reserve Disposal Area (m ²)	72
Percentage of Primary Disposal Area (%)	100%

7. Please provide a detailed description of the design and dimensions of the disposal field and attach a detailed plan of the field relative to the property site:

Description and Dimensions of Disposal Field:

1 x 12.0 long x 0.5m wide x 0.45m deep ETS beds with 1m spacing between beds.				
Total enclosed area for disposal is 72m ²				
Total storage capacity of the four beds is 2.4m ³ .				
Plan Attached	Yes			
if not explain why not				

PART I: MAINTENANCE & MANAGEMENT (Refer TP58 section 12.2)

1. Has a maintenance agreement been made with the treatment and disposal system suppliers?

yes	Not known	no	Not known		
Name of Supplie	rs tbc				

PART J: ASSESSMENT OF ENVIRONMENTAL EFFECTS

1. Is an assessment of environmental effects (AEE) included with this application?

(refer TP58 Section5. Ensure all issues concerning potential effects addressed)

yes <u>no</u>

If yes, list and explain possible effects

PART K: IS YOUR APPLICATION COMPLETE?

1. In order to provide a complete application you have to remember to:

Fully Complete this Assessment Form	Yes
Include a Location Plan and Site Plan (with scale bars)	Yes
Include a Property Tittle (Certificate of Tittle)	
Attach an Assessment of Environmental Effects (AEE)	

2. Declaration

I hereby certify that to the best of my knowledge and belief, the information given in this application is true and complete.

Name	Pradeen Kumar	Signature	\sim	8
Name	r raueep Rumai	Signature	(X X	lin the
Position	Professional Chartered Engineer	Date	Sep-24	

Note

Any alteration to the site plan or design after approval will result in non compliance.

CHARTERED PROFESSIONAL ENGINEERS

PROJECT:

TIA & RAYMON ASHBY

PROJECT ADDRESS:

184 ROMA ROAD, AHIPARA

LEGAL DESCRIPTION

Ahipara A8A1A Block ML 599808

JOB NO:

21-154E

DATE:

SEPTEMBER 2024

REVISION: 1

SEPTEMBER 2024

Revised Layout Site plan in conjunction with updated Architectural plans.

Engineering Updates:

- 1. Wastewater layout and type is ETS
- 2. Stormwater Attenuation Revised
- 3. Updated GTE cross section with Rib-Raft foundation type.

DRAWING INDEX:

SG1	LOCALITY PLAN
SG2	SITE PLAN
SG3	CROSS SECTION A - A
SG4	CROSS SECTION B - B
SG5	ETS BEDS LAYOUT
SG6	ETS BEDS DETAILS
SG7	ATTENUATION TANKS DETAILS

NOTES:

VERIFY ALL DIMENSIONS AND LEVELS ON SITE BEFORE COMMENCING WORK. USE WRITTEN DIMENSIONS IN PREFERENCE TO SCALING THESE DRAWINGS. READ IN CONJUNCTION WITH THE ARCHITECTS DRAWINGS, STRUCTURAL CALCULATIONS, FIRE REPORT & STRUCTURAL SPECIFICATIONS. BUILDING TO COMPLY WITH NZS3604. ENSURE TO HAVE THE ENGINEERING CALCULATIONS, STRUCTURAL SPECIFICATIONS, STRUCTURAL DRAWINGS & BUILDING PERMIT ON SITE EACH DAY BEFORE COMMENCING WORK. ALL PRODUCTS ARE TO BE STORED & INSTALLED TO MANUFACTURERS SPECIFICATIONS. ALL EXPOSED STRUCTURAL STEEL IS TO BE GALVANIZED AND FINISHED OFF AS PER THE STRUCTURAL STEEL SPECIFICATIONS.

LEVEL 2 ANZ Bank Building 90 Kerikeri road, P.O.Box 464 KERIKERI

Tel. (09) 4073255 Fax. (09) 4073256 E-mail. teampk@pkengin.co.nz

Notes:					
1. THE COPYRIGHT OF THIS DRAWING IS VESTED IN PK EN AND IT MAY NOT BE REPRODUCED IN WHOLE OR PAR MANUFACTURE OF ANY ARTICLE WITHOUT THE EXPRES THE COPYRIGHT HOLDERS.	GINEEF T OR U S PERM	RING SED FOR THE ISSION OF			
2. VERIFY ALL DIMENSIONS AND LEVELS ON SITE BEFORE WORK, USE WRITTEN DIMENSIONS IN PREFERENCE TO S DRAWINGS.	COMN SCALIN	IENCING G THESE			
3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ARCHITECTS, SERVICES, CIVIL AND OTHER PROJECT E SPECIFICATIONS, ANY DISCREPANCIES SHALL BE REFEI ENGINEER FOR RESOLUTION.	ALL RE RAWIN REED TO	ELEVANT IGS AND D THE			
4. IN THE EVENT THAT THERE IS ANY CONFLICT BETWEEN 1 SPECIFICATION THEN THE REQUIREMENTS OF THE DRA PRECEDENCE, WITH THE DETAIL DRAWINGS TAKING PI THE GENERAL NOTES.	THE DRA WINGS RECEDE	AWINGS AND SHALL TAKE ENCE OVER			
R1 Revised Site Location Plan	RD	13/9/24			
to updated Architectural plans. New Boundaries					
and Lot Number.					
DATE: 13 09 2024 CHECKED BY:					
CHARTERED PROFESSIONAL ENGINEER (STRUCTURAL, GEOTECHNICAL) IntPE, CPEng, MIPENZ No. 203058					
REV: DESCRIPTION:	RY-	DATE			
STATUS: ISSUED FOR CONS	SEN	T			
	4				
ENGINEER					
CHARTERED PROFESSIONAL ENGI	NEEF	25			
LEVEL I, ANZ BANK 90 KERIKERI ROAD, KERIKERI PO BOX 464 KERIKERI					
Phone Number: 09 407 3255	PO BOX 464, KERIKERI Phone Number: 09 407 3255				
ΠΑ & ΚΑΥΜΟΝ ΑΣΗΒΥ					
STTE: 184 ROMA ROAD	STE: 184 ROMA ROAD				
AHIPARA TITLE: LOCALITY PLAN					
SCALE AT A3: DATE: DRAWN:	CHE	CKED:			
1:1000 13/09/2024 RD PROJECT NO: DRAWING NO:	REVI	PK SION:			
21-154E A3/SG1		1			

		Notes:		
1. THE ANI MA THE	E COPYRIGHT OF D IT MAY NOT BE NUFACTURE OF A COPYRIGHT HOL	THIS DRAWING IS VESTED IN P REPRODUCED IN WHOLE OR ANY ARTICLE WITHOUT THE EXI LDERS.	K ENGINE PART OR PRESS PER	ERING USED FOR TH MISSION OF
2. VEI WC DR	RIFY ALL DIMENSIO DRK. USE WRITTEN AWINGS.	ONS AND LEVELS ON SITE BEF I DIMENSIONS IN PREFERENCE	ORE COM TO SCAL	IMENCING ING THESE
3. THI AR SPE EN	S DRAWING IS TO CHITECT'S, SERVIC ECIFICATIONS, AN GINEER FOR RESC) BE READ IN CONJUNCTION ' CES, CIVIL AND OTHER PROJE NY DISCREPANCIES SHALL BE F DLUTION.	WITH ALL F CT DRAW REFEREED	RELEVANT INGS AND TO THE
4. IN T Spe Pri The	THE EVENT THAT T ECIFICATION THEN ECEDENCE, WITH E GENERAL NOTES	HERE IS ANY CONFLICT BETWI N THE REQUIREMENTS OF THE THE DETAIL DRAWINGS TAKIN S.	EEN THE D DRAWING IG PRECEI	RAWINGS AI SS SHALL TAK DENCE OVEF
R1	Wastewa - Ne	iter Updates: w Soakage tests dated WWW field	RE	0 13/9/2
	to	ETS- with Setbacks	6	
	Stormwa	ter Updates:		
	- Att to - Sto flov	enuation revised new site coverage ormwater outflows ws marked as sho	s wn.	
	DATE: 13 0 CHECKED B RAGEEP KUM CHATERD PR (STRUCTURAL C INTEC. CPEN, MI	INEERING LIMITED 19 2024		
REV	DATE: 13 0 CHECKED B PRADEEP KUMA CHARTERED PR (STRUCTURAL C INFE. CPEN, MIN	INEERING LIMITED	84	DATE
REV: STATU	DATE: 13 0 CHECKED B PRADEEP KUM (STRUCTURAL C INTEL CPENG, MIL S: LESCRIPTION: S: LSSU	INEERING LIMITED 19 2024 June 1 SY: SY: SY: SY: SY: SY: SY: SY:	NSET	DATE: NT
REV: STATU	DESCRIPTION:	INEERING LIMITED 9 2024 Processional Engineer Processional Engineer PED FOR COI ENGINEE PROFESSIONAL EN	BY: NSEI RIN	DATE: NT G
REV: STATU EH LEV 90 k PO Pho	DATE: 13 0 DATE: 13 0 CHECKED B PRADEEP KIMA CHARTERED PR CHARTERED PR DESCRIPTION: S: ISSU DESCRIPTION: S: ISSU D	INEERING LIMITED 19 2024 Professional Engineer actional Engineer actional Engineer PROFESSIONAL ENGINEER PROFESSIONAL ENGINEER PROFESSIONAL ENGINEER AD, KERIKERI RIKERI 209 407 3255	BY: NSEI RIN	DATE: NT G
REV: STATU E H LEV 90 k PO Pho Emo	DATE: 13 0 CHECKED B PRATERCOM CHECKED B PRATERCOM CHECKED B PRATERCOM CHECKED B PRATERCOM CHECKED B PRATERCOM CHECKED B CHECKED B C CHECKED B CHECKED B CHECKED B CHECKED B CHECKED B CHECKED B C CHECKED B C CHECKED B C CHECKED B C CHECKED B C CHECKED B C CHECKED B C C C C C C C C C C C C C C C C C C C	INEERING LIMITED 19 2024 Professional Engineer Professional Engin	BY	DATE: NT G
REV: STATU LEV 90 k PO Pho Emo	DATE: 13 0 CHECKED DE PRADEER KIMA CHARTERED PRI CHECKED DE PRADEER KIMA CHARTERED DE DESCRIPTION: S: ISSU DESCRIPTION: S: ISSU DATE RED EL 1, ANZ BA SCRIKER ROA BOX 464, KEI one Number: ail: teampk@ T: TIA &	INEERING LIMITED 19 2024 Professional Engineer Professional Engin	BY: NSET	DATE: NT G
REV: STATU LEV 90 k PO Phot Emot	DATE: 13 0 CHECKED B PRAPER DRI CHECKED B REARTERED PR CARTERED PR CARTERED PR CHECKED B CHECKED	INEERING LIMITED 9 2024 Professional Engineer Professional Engine	ISINE E	DATE: VT G
REV: STATU LEV PO Pho CLIEN SITE:	DATE: 13 0 CHECKED B CHARCED B CHARCED B CHARTERED PRI CHARTERED PRI CHARTERED PRI CHARTERED PRI ESS DESCRIPTION: SI DESCRIPTI	INEERING LIMITED 19 2024 Professional Engineer Professional Engin	NSET RIN IGINEE 3Y	DATE: NT G
REV: STATU LEV 90 k PO Pho CLIEN SITE: SCALE	DATE: 13 00 CHECKED B PRATERE NUME CHARTERE NUME CHECKED B PRATERE NUME CHARTERE NUME CHECKED B CHARTERE NUME S ISSU IDESCRIPTION: S IDESCRIPTION: S	INEERING LIMITED 19 2024 ST. SPESSIONAL ENGINEER SOFCENICAL PED FOR COI SED F	IGINEE 3Y	

CROSS SECTION A - A SCALE 1 : 150 @A3

		Notes:	
1. THE ANE MAI THE	COPYRIGHT OF T T MAY NOT BE NUFACTURE OF A COPYRIGHT HOL	THIS DRAWING IS VESTED IN PK EN REPRODUCED IN WHOLE OR PAI NY ARTICLE WITHOUT THE EXPRES DERS.	ngineering rt or used for ti ss permission of
2. VER WC DR	RIFY ALL DIMENSIC DRK. USE WRITTEN AWINGS.	DNS AND LEVELS ON SITE BEFORE DIMENSIONS IN PREFERENCE TO	COMMENCING SCALING THESE
3. THIS ARC SPE ENC	DRAWING IS TO CHITECT'S, SERVIC CIFICATIONS. AN GINEER FOR RESO	BE READ IN CONJUNCTION WITH CES, CIVIL AND OTHER PROJECT I IY DISCREPANCIES SHALL BE REFE DLUTION.	HALL RELEVANT DRAWINGS AND REED TO THE
4. IN T SPE PRE THE	HE EVENT THAT TH CIFICATION THEN CEDENCE, WITH GENERAL NOTES	HERE IS ANY CONFLICT BETWEEN I THE REQUIREMENTS OF THE DRA THE DETAIL DRAWINGS TAKING P S.	THE DRAWINGS A WINGS SHALL TAK RECEDENCE OVE
R1	Updated t to typical	foundation layout Rib Raft type	RD 13/9/
	D,		
	DATE: 13 CHECKE	NGINEERING LIMITED	
	PRADEEP KU CHARTEREE (STRUCTUR IntPE, CPEng	UMAR D PROFESSIONAL ENGINEER AL, GEOTECHNICAL) g, MIPENZ No. 203058	
REV: STATU	description: 5: ISSU	ED FOR CON	by: date: SENT
REV: STATU:	DESCRIPTION: S: ISSU		BY: DATE: SENT
REV: STATU: C H LEVVI 90 K PO) Pho	DESCRIPTION: S: ISSU IARTERED F EL 1, ANZ BAI SCRIKERI ROA BOX 464, KEF ne Number:	ED FOR CONS ENGINEER PROFESSIONAL ENGINAL NK N, KERIKERI RKERI 09 407 3255	BY: DATE: SENT
REV: STATU: C F LEV 90 K PO J Pho Emaa	DESCRIPTION: S: ISSU MARTERED F EL 1, ANZ BAI CERIKERI ROA BOX 464, KEF ne Number: ail: teampk@	ED FOR CONS ENGINEER PROFESSIONAL ENGINK D, KERIKERI RIKERI 09 407 3255 Ipkengin.co.nz	BY: DATE: SENT
REV: STATU: LEV 90 k PO Pho Ema	DESCRIPTION: S: ISSU MARTERED F EL 1, ANZ BAI S: ERIKERI ROA BOX 464, KEF ne Number: sill: teampk@ TIA &	ED FOR CONS ENGINEER PROFESSIONAL ENGINK D, KERI 09 407 3255 pkengin.co.nz RAYMON ASHBY	BY: DATE: SENT
REV: STATUS C H LEVI 90 k PO J Pho Emc CLIENT	DESCRIPTION: S: ISSU MARTERED F EL 1, ANZ BAI ERIKERI ROA BOX 464, KEF ne Number: il: teampk@ TIA & 184 R AHID	ED FOR CONS ENGINEER PROFESSIONAL ENGINK D, KERIKERI RKERI 09 407 3255 pkengin.co.nz RAYMON ASHBY	BY: DATE: SENT
REV: STATU: C F PO D Pho Emcc CLIENT	DESCRIPTION: S: ISSU MARTERED F HARTERED F LI, ANZ BAI CERIKERI ROA BOX 464, KEF ne Number: sil: teampk@ TIA & 184 R AHIP, CROS	ED FOR CONS ENGINEER PROFESSIONAL ENGI NK D, KERIKERI RKERI 09 407 3255 pkengin.co.nz RAYMON ASHBY COMA ROAD ARA SS SECTION A - A	BY: DATE: SENT
REV: STATU: E HEVI 90 K PO D Pho Emac CLIENT SITE: SCALE	DESCRIPTION: S: ISSU ISSU INARTERED F EL 1, ANZ BAI ERIKERI ROA BOX 464, KEF ne Number: Dil: teampk@ TIA & 184 R AHIP, CROS AT A3: 1:150	ED FOR CONS ENGINEER PROFESSIONAL ENGINK NK D, KERIKERI RKERI 09 407 3255 pkengin.co.nz RAYMON ASHBY ROMA ROAD ARA SS SECTION A - A	BY: DATE: SENT NEERS

CROSS SECTION B - B SCALE 1 : 150 @A3

	50
	49
	48
	47
	46
	45
	44
W	43
OL	42
	41
	40
K LAYER	39
	38
	37
	36
	35
	34
	33
	32
	31
	30
	29
	28
	27
	26

1. THE ANE MAN THE	COPYRIGHT OF T IT MAY NOT BE NUFACTURE OF A COPYRIGHT HOL	HIS DRAWING IS V REPRODUCED IN V NY ARTICLE WITHO DERS.	'ESTED IN PK ENC WHOLE OR PART DUT THE EXPRESS	GINEER OR U PERM	ING SED FOR THE ISSION OF
2. VER WO	RIFY ALL DIMENSIO	DNS AND LEVELS C DIMENSIONS IN PF	on site before c Reference to so	COMN CALIN	ENCING G THESE
3. THIS ARC SPE ENC	DRAWING IS TO CHITECT'S, SERVIC CIFICATIONS, AN GINEER FOR RESO	BE READ IN CONJ ES, CIVIL AND OT Y DISCREPANCIES LUTION.	UNCTION WITH A HER PROJECT DR SHALL BE REFER	ALL RE AWIN EED TO	LEVANT GS AND) THE
4. IN T SPE PRE THE	HE EVENT THAT TH CIFICATION THEN CEDENCE, WITH GENERAL NOTES	HERE IS ANY CONF I THE REQUIREMEN THE DETAIL DRAWN	LICT BETWEEN TH ITS OF THE DRAW NGS TAKING PRI	ie dra /INGS ECEDE	AWINGS AN SHALL TAKE NCE OVER
R1	Updated typical rib	Foundation p-raft type.	to	RD	13/9/2
			_		
	DATE: 13 CHECKE PRADEEP KI (STRUCTUR)	NGINEERING L 3 09 2024 D BY: JMAR PROFESSIONAL ENGI AL, GEOTECHNICAL)	IMITED		
	IntPE, CPEng	i, MIPENZ No. 203058			
REV:	DESCRIPTION: S: ISSU	ED FOR	CONS	BY: EN	DATE:
CH			NEERI NAL ENGIN	NC	25
90 K PO E Phoi	ERIKERI ROA BOX 464, KER ne Number:	D, KERIKERI RIKERI 09 407 3255	7		
CLIENT	TIA &	RAYMON	I ASHBY		
SITE:	184 R AHIP	OMA RO	AD		
TITLE:	CRO	SS SECTIO	N B - B		
SCALE	AT A3: 1:150	DATE: 13/09/2024	DRAWN: TY	CHE	PK
PROJE	ст <u>но:</u> 1-154Е	DRAWING NO: A3/S	6G4	REVI	sion:]

Notes:

ETS BED DETAIL

ETS BEDS DETAIL SCALE 1:10

AND IT MAY NOT BE REPRODUCED IN WHOLE OR PART OR USED FOR THE MANUFACTURE OF ANY ARTICLE WITHOUT THE EXPRESS PERMISSION OF THE COPYRIGHT HOLDERS.									
2. VERIFY ALL DIMENSIONS AND LEVELS ON SITE BEFORE COMMENCING WORK, USE WRITTEN DIMENSIONS IN PREFERENCE TO SCALING THESE DRAWINGS.									
 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, SERVICES, CIVIL AND OTHER PROJECT DRAWINGS AND SPECIFICATIONS, ANY DISCREPANCIES SHALL BE REFEREED TO THE ENGINEER FOR RESOLUTION. 									
4. IN THE EVENT THAT THERE IS ANY CONFLICT BETWEEN THE DRAWINGS AND SPECIFICATION THEN THE REQUIREMENTS OF THE DRAWINGS SHALL TAKE PRECEDENCE, WITH THE DETAIL DRAWINGS TAKING PRECEDENCE OVER THE GENERAL NOTES.									
R1	Updated as shown	WW discha details.	rge to	RD	13/9/24				
	R,								
	DATE: 1 CHECKE PRADEEP K	NGINEERING L	MITED						
	CHARTERED (STRUCTUR IntPE, CPEng	D PROFESSIONAL ENGI AL, GEOTECHNICAL) g, MIPENZ №. 203058	NEER						
REV:	DESCRIPTION:			BY:	DATE:				
SIATU	* ISSU	ED FOR	CONS	ΕN	T				
		ENGI	NEERI	NC					
LEVI 90 K	EL 1, ANZ BA	NK D, KERIKERI	NAL ENGIN	EER	! S				
Pho Emc	ne Number: nil: teampk@	09 407 3255 pkengin.co.r	٦Z						
CLIENT	" TIA &	RAYMON	I ASHBY						
site: 184 ROMA ROAD									
AHIPARA TITLE: ETS BEDS DETAILS									
SCALE AT A3: DATE: DRAWN: CHECKED: 1:10 13/09/2024 RD PK									
PROJE	ст <u>NO:</u> -1,54F	DRAWING NO:	SG6	REVI	SION: 1				

Notes: 1. THE COPYRIGHT OF THIS DRAWING IS VESTED IN PK ENGINEERING

Notes: . THE COPYRIGHT OF THIS DRAWING IS VESTED IN PK ENGINEERING AND IT MAY NOT BE REPRODUCED IN WHOLE OR PART OR USED FOR THE MANUFACTURE OF ANY ARTICLE WITHOUT THE EXPRESS PERMISSION OF THE COPYRIGHT HOLDERS. 2. VERIFY ALL DIMENSIONS AND LEVELS ON SITE BEFORE COMMENCING WORK. USE WRITTEN DIMENSIONS IN PREFERENCE TO SCALING THESE DRAWINGS. 3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, SERVICES, CIVIL AND OTHER PROJECT DRAWINGS AND SPECIFICATIONS, ANY DISCREPANCIES SHALL BE REFEREED TO THE ENGINEER FOR RESOLUTION. 4. IN THE EVENT THAT THERE IS ANY CONFLICT BETWEEN THE DRAWINGS AND SPECIFICATION THEN THE REQUIREMENTS OF THE DRAWINGS SHALL TAKE PRECEDENCE, WITH THE REQUIREMENTS OF THE DRAWINGS SHALL TAKE PRECEDENCE, WITH THE DETAIL DRAWINGS TAKING PRECEDENCE OVER THE GENERAL NOTES. RD 13/9/24 R1 Stormwater Attenuation revised to new site coverage Details provided as shown. Run DATE: 13 09 2024 CHECKED BY: PRADEEP KUMAR CHARTERED PROFESSIONAL ENGINEER (STRUCTURAL, GEOTECHNICAL) IniPE, CPEng, MIPENZ No. 203058 REV: DESCRIPTION: BY: DATE: TATUS **ISSUED FOR CONSENT** ENGINEERING CHARTERED PROFESSIONAL ENGINEERS LEVEL 1, ANZ BANK 90 KERIKERI ROAD, KERIKERI PO BOX 464, KERIKERI Phone Number: 09 407 3255 Email: teampk@pkengin.co.nz CLIENT: TIA & RAYMON ASHBY SITE 184 ROMA ROAD AHIPARA TITLE: ATTENUATION TANKS DETAIL SCALE AT A3 HECKED 13/09/2024 1:50 RD PK PROJECT NO: ING NO: EVISION: 21-154E A3/SG7 1

Plant Species

Astelia grandis

Wide olive green leaves with a silvery sheen beneath and reddish purple midribs, the clump can be up to 2m high. It is an inhabitant of swampy ground from lowland to montane altitudes throughout the North Island and to Southern Canterbury. Preferring a damp soil, it is able to withstand permanently wet feet.

1.5-2m

Alocasia nigrescens (Black Taro)

Large black green blunt arrow shaped leaves on dark purple stalks from loose clumps in damp part shaded areas.

0.5/0.5m

Apodasmia similis (Oioi)

An extremely elegant native reed with blueish green foliage with browny bract at the joins. Grows up to 1m and has a creeping rhizome. Thrives in marshlands and estuaries. Will grow in most conditions. Is very hardy.

1.5/2.0m

Arthropodium Cirratum (Rengarenga Lily)

An attractive perennial plant, known as the Rengarenga Lily. A clump forming plant with drooping fleshy strap leaves. Masses of white starry flower heads throughout summer. It can grow in a wide range of conditions, including coastal and shade. Will not tolerate severe frosting.

1.0/1.0m

Blechnum Novae Zealandiae

An attractive creeping fern with drooping fronds. New growth is always reddish. An easy to grow fern which looks most attractive when grown on a bank, or as a ground cover, provided there is ample moisture.

0.8-1m

Carex Dispacea

This sedge is densely tufted. The narrow leaves are light green and make an attractive contrast to darker foliage. In the garden it should have a sunny or semi-shaded site. Prefers damp conditions.

0.7/0.6m

Carex dissita

An attractive sedge with an arching habit. The ribbed leaves are a fresh bright green and contrast with the very dark seed heads that are carried on the stems. It can be grown in quite shady areas, such as under trees, or in an open situation, but it requires a moist soil.

0.7/0.7m

Carex maorica

This sedge grows into upright clumps with ribbed light green leaves. The foliage is fragile and can snap easily making it an unattractive garden specimen. It is best suited to environmental plantings.

0.7/0.6m

Carex secta

This is a common plant of swampy areas throughout New Zealand. It forms large tussocks with weeping yellowish green leaves. At its best beside water, it will grow in any moist soil in sun or semishade. Old specimens in moist to wet sites often form thick sturdy trunks from the matted roots and old stem bases.

1.0/0.6m

Carex tenuiculmis

This species is a common plant of swampy areas it is of a reddish bronze colour and is at its best beside water. It will grow in any moist soil in the sun or semi-shade. This species does not form a trunk.

0.7/0.6m

Carex virgata

A vigorous sedge that has narrow arching bright green leaves. It is a useful species for waterside planting and very damp soils but will also grow on dry sites and in sun or semi-shade.

0.7/0.6m

Carpodetus serratus (Marble leaf)

An attractive tree with upright spreading branches, found throughout New Zealand on forest margins and stream banks. The juvenile form has tangled growth.

3-5m

Cordyline australis (Cabbage Tree)

One of NZs best known and most distinctive plants. The young tree has long narrow, mid green leaves which arise directly from a single trunk, having aneffect similar to ornamental grasses. The creamy and fragrant flowers are a stunningfeature, appearing in large densely packed panicles during late spring and summer. An excellent plant for landscaping, being suitable for group and specimen planting.

7.5/2.0m

Cordyline Midnight Star

A variety of the red or maroon Cabbage Tree. A good selection for a visual impact within the garden.

7.5/2.0m
Cortaderia fulvida (Toi toi)

This is one of the smaller toetoe, with a height of 1.5 - 2.5m when flowering. The blueish green leaves ae shiny beneath and up to 4 cm wide and 2m long. Its golden flower plumes sometimes have a pinkish tinge.

2.0/2.0m

Coprosma Rugosa

A tough colourful and interesting alpine shrub with very tangled bright orange new growth. Bears berries attractive to birds. Can be clipped into an interesting hedge or allowed to grow freely will become a medium sized shrub.

1.5-3m

Coprosma Grandfolia

It is a good coloniser or shelter species tolerating a wide range of soils, and shade to full sun. Its clusters of orange/red fruits are attractive to birds, though to have fruits you may need to grow several, as coprosma plants bear flowers of only one sex. Flowers appear in late autumn and winter, and are pale but quite conspicuous.

up to 6m

Cyperus ustulus

This is a plant of damper areas. It is very vigorous, growing into a clump with deep olive-green, very sharp edged leaves. The flowering stems are up to 1.2 m or more, with a ruff of leafy bracts below the spikelets. A useful plant for revegetation in wet areas, but it is generally considered to vigorous for most garden situations.

0.8/1.2m

Dianella King Alfred

An attractive form of Dianella. This selected form has an ability to survive a wide range of conditions. It has a small flax like appearance.

0.8/0.6m

Dianella nigra

This is a hardy tufted plant resembling a small fine leaved flax. It grows to about 60cm high and bears insignificant flowers from late spring to summer. These are followed by the plants most ornamental feature, its berries. In the best form these are a glossy dark blue, but can vary to quite pale colours. Grows in sun or semi-shade and in a range of soil conditions. Looks good planted as a ground cover.

0.6/0.6m

Elatostema Rugosum

Naturally inhabiting damp shady streamsides and gullies; it has dark stems with pinnate leaves that are rough and wrinkled and have serrated margins.

The leaves are dark bronzy green with purple tonings. An intereting foliage plant that makes a very good groundcover for a wet shady position.

0.5-1m

Fuchsia Excorticate

The largest *Fuchsia* in the world. A small tree with stunning orange-brown papery bark and interesting twisted shape. Purple-red flowers early spring to summer. The edible fleshy Konini fruit from January to March is sweet and tasty. It was made into jams and desserts by early settlers. Attractive to bees. Prefers a moist soil. Deciduous. Hardy.

5m

Hebe Stricta

Hebe stricta is an open branching shrub found throughout New Zealand. Its long narrow leaves are deep green and glossy. The white mauve-tinged flowers appear on 7-15cm spikes during summer. Pruning is important to maintain a good shape. It is also a hardy landscape plant. Depth of colour and handsome foliage places this hebe in a class of its own.

1-3m

Juncus Gregiflorus

A rush of swampy areas throughout New Zealand. It grows into a tight clump 1-2m tall with bright green stems. It is ideal for revegetation of wetlands and riparian areas and is useful for damp landscaping areas.

1-2m

Leptospermum Burgundy Queen (Flowering Ti Tree)

Exquisite double flowers of deep burgundy red late winter and spring, Dark reddish bronze foliage.

2.0/1.5m

Libertia Grandiflora

Larger flowered species found in damp situations. Brownish green linear leaves to90x1.5cm tapering to a point. Attractive white 3-5 cm flowers with olive or bronzekeel are carried on 90cm lightly branched stems in early summer, followed inautumn by decorative golden brown seed capsules.

0.9/0.7m

Leptospermum scoparium

It is a primary species which provides a natural habitat that allows other New Zealand native species to become established. It naturally dies out after 20-25 years. It is often found growing at the margins of a mature forest. Manuka has small narrow sharply pointed dark green leaves, and bears masses of small white or pale pink flowers from spring into early summer. It is tolerant of practically any conditions and is used in most revegetation projects nation wide.

4-8m

Libertia peregrinans

Simple but interesting plant. Sword like leavesto 25-2cm, brownish green or khakiwith well defined orange yellow midriff, tapering to a sharp point, arranged in fans. The plant is sustained by underground rhizomes from which new fans of leavesappear. Small white 3 peatled flowers on short stems in spring, followed by bronzeyellow capsules.

0.3/1.0m

Melicytus Ramiflorus

The pointed oval leaves are a bright green, with fresh growth being quite soft and an even brighter green. The bark is grayish white and becomes attractively mottled with lichens. The tiny flowers are produced abundantly in spring and are followed by numerous purple black berries.

5m

Phormium Tenax

The foliage is khaki green coloured and up to 3m long. The nectar from the flowers, borne on tall slender flower stalks, is a great attractor to native birds such as Tui. Harakeke is abundant throughout New Zealand particularly in wetland areas. Perfect for revegetation, riparian plantings, and for landscaping.

2-3m

Phormium Surfer

Flax. An excellent compact dwarf clump forming perennial, producing olive green weeping leaves with bronze margins. Excellent all round garden specimen growing anywhere from dry to damp conditions. Withstands strong coastal winds and is frost hardy. Use in mass landscape with other natives.

0.5/0.5m

Schefflera Digitata

The large deep green, rather soft leaves are composed of up to 9 oval leaflets arising from a singe point. They get progressively bigger as they radiate outwards, with the biggest leaflet being up to 20cm. The margins are finely serrated and tinged with pinkish red, as are the veins and midribs. Large panicles of tiny greenish white flowers hang below the leaves in summer and are followed by white to purple berries. Pate should be given a shady and sheltered position in good moist soil. Could be used to good effect in a tropical planting or as a background plant.

Stormwater Attenuation Calculations

For

Proposed New Dwelling

For

Tia and Raymon Ashby

Job No: 21-154E Date: 16/09/2023

> Level 1 ANZ Bank Building 90 Kerikeri Road, Kerikeri, New Zealand Telephone: 09 407 3255, Email: <u>TeamPK@pkengin.co.nz</u>

(Gui

ACENZ	Building Code Clause(s) E1
PRODUCER STATEMENT – P ance on use of Producer Statements (formerly page 2) is avail	S1 – DESIGN Ilable at <u>www.engineeringnz.org</u>)
a Ltd	

ISSUED BY: PK Engineering Ltd	(Design Firm)
TO: Tia and Raymon Ashby	(Design Firm)
(0 Ear North District Council	wner/Developer)
TO BE SUPPLIED TO: 1 al Horar District Counter	a Consent Authority)
IN RESPECT OF: Stormwater attenuation design.	
(Descri	tion of Building Work)
AT: 184 Roma Rd	
- Jour Abinara	(Address) A8A1A BLOCK MI 599808
Town/City:	DP MEDicities SO
We have been engaged by the owner/developer referred to	above to provide:
1. Stormwater attenuation design.	
(Exte	int of Engagement)
services in respect of the requirements of Clause(s)	of the Building Code for:
All or Part only (as specified in the attachment to th	is statement), of the proposed building work.
The design carried out by us has been prepared in accorda	ince with:
Compliance Documents issued by the Ministry of Busin	E1/VM1
Compliance Documents issued by the Ministry of Busin	(verification method/acceptable solution)
Alternative solution as per the attached schedule	
The proposed building work covered by this producer state	ment is described on the drawings titled:
Tia & Raymon Ashby	and numbered SG1-SG7
together with the specification, and other documents set out	t in the schedule attached to this statement.
On behalf of the Design Firm, and subject to:	1/4
(i) Site verification of the following design assumptions	
(ii) All proprietary products meeting their performance spec	lication requirements;
I believe on reasonable grounds that a) the building, if or documents provided or listed in the attached schedule, will the persons who have undertaken the design have the nec construction monitoring/observation: CM1 CM2 CM3 CM4 CM5 (Engineering of	Instructed in accordance with the drawings, specifications, and other comply with the relevant provisions of the Building Code and that b), essary competency to do so. I also recommend the following level of a sper agreement with owner/developer (Architectural)
Pradeep Kumar	am: CREng 203058 # Reg Amb #
(Name of Design Professional)	
I am a member of: Engineering New Zealand NZIA	and hold the following qualifications: B.E. (Hons), IntPE, CPEng
The Design Firm issuing this statement holds a current policy. The Design Firm is a member of ACENZ:	y of Professional Indemnity Insurance no less than \$200,000*.
Pradeen Kumar	mm Hunor
SIGNED BY Made of Design Professional	(Signature)
PK Engineering Ltd	16/09/2024
ON BEHALF OF (Design Firm)	DateDate.
Note: This statement shall only be relied upon by the Building Con Design Firm only. The total maximum amount of damages payable Consent Authority in relation to this building work, whether in contr	sent Authority named above. Liability under this statement accrues to the arising from this statement and all other statements provided to the Building act, tort or otherwise (including negligence), is limited to the sum of \$200,000*.
This form is to accompany Form 2 of the Building (For THIS FORM AND ITS CONDITIONS ARE COPYL	ms) Regulations 2004 for the application of a Building Consent. RIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

PRODUCER STATEMENT PS1

October 2013 (reissued October 2017)

GUIDANCE ON USE OF PRODUCER STATEMENTS

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects, Institution of Professional engineers New Zealand (now Engineering New Zealand), Association of Consulting Engineers New Zealand in consultation with the Building Officials Institute of New Zealand. The original suit of producer statements has been revised at the date of this form as a result of enactment of the Building Act (2004) by these organisations to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with reasonable grounds for the issue of a Building Consent or a Code Compliance Certificate, without having to duplicate design or construction checking undertaken by others.

PS1 Design Intended for use by a suitably qualified independent design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 Design Review Intended for use by a suitably qualified independent design professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 Construction Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 2011²

PS4 Construction Review Intended for use by a suitably qualified independent design professional who undertakes construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACENZ, Engineering NZ and NZIA to interpret the Producer Statement.

Competence of Design Professional

This statement is made by a Design Firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its designers.

A competent design professional will have a professional qualification and proven current competence through registration on a national competence based register, either as a Chartered Professional Engineer (CPEng) or a Registered Architect.

Membership of a professional body, such as Engineering New Zealand (formerly IPENZ) or the New Zealand Institute of Architects (NZIA), provides additional assurance of the designer's standing within the profession. If the design firm is a member of the Association of Consulting Engineers New Zealand (ACENZ), this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably gualified independent design professional".

*Professional Indemnity Insurance

As part of membership requirements, ACENZ requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard, small projects. If the parties deem this inappropriate for large projects the minimum may be up to \$500,000.

Producer Statements PS1, PS2, & PS4

Professional Services during Construction Phase There are several levels of service which a Design Firm may provide during the construction phase of a project (CM1-CM5 for Engineers³). The Building Consent Authority is encouraged to require that the service to be provided by the Design Firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4 Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design firm's engagement.

Attached Particulars

Attached particulars referred to in this producer statement refer to supplementary information appended to the producer statement

Refer Also:

Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013

- 2 NZIA Standard Conditions of Contract SCC 2011
- ³ Guideline on the Briefing & Engagement for Consulting Engineering Services (ACENZ/IPENZ 2004)
- 4 PN Guidelines on Producer Statements

www.acenz.org.nz www.engineeringnz.org www.nzia.co.nz

ACENZ

1		Rational meth	od	48hr				
Pre – Development water flow								1
		Roof	Concrete &	Metaled area	Other			
(Original water flow)		& decks	smooth seal	Or rough seal	Impervious	Vegetation	Bush	
Total area.	Area (m^2)	1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)	
	674.90	0	0	0	0	674.9	0	
	Runoff coefficen	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	
Use "C" values from I	NDC TR55 chart	FALSE	FALSE	FALSE	FALSE	0.59	FALSE	
Generally do not use slope adjustment Ci fa	actor if using TR55	0.96	0.96	0.8	0.65	0.59	0.59	
	Rainfall intensity	l (mm/hr)	l (mm/hr)	l (mm/hr)	l (mm/hr)	l (mm/hr)	l (mm/hr)	
Rainfall Data from NIWA. Hirds 4	4, RCP6, 2081-210	0 3.20	3.20	3.20	3.20	3.20	3.20	
Use an appropiate event for the situation								
Flow rat	e of surface water	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	
		0.000	0.000	0.000	0.000	0.000	0.000	
								1
Pre –	development flow	Qp (m^3/sec)	Qp (L/sec)					
	of developed area	0.0004	0.35					
		Any area where	there is a change)		Pre-development are	a where there is	Any area where there
Post – Development water flow		in the impermial	blity values			a change in imperme	able surfaces but	to the impermiablity
						not collected in atenu	uation system	
		Roof	Concrete &	Metaled area		Concrete &	Metaled area	Metaled area
		& decks	smooth seal	Or rough seal	Vegetation	smooth seal	or vegetation	or seal
Total area.	Area (m^2)	1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)	7 (m^2)
0//	674.90	674.9				0	0	0
UK		Ci (coofficient)	Ci (coofficient)	Ci (coofficient)	Ci (coofficient)	Ci (coofficient)	Ci (coofficient)	Ci (coofficient)
Use "C" values from I	NDC TR55 chart	0.96	EALSE	FALSE	FALSE	0.2	0.3	FALSE
Generally do not use slope adjustment Ci fa	actor if using TR5	0.96	0.96	0.8	0.59	"C" value difference be	tween Pre & Pos	0.96
	•					Maximum value 0.2 (at the	e moment]	
Rai	nfall intensity rate	l (mm/hr)	l (mm/hr)	I (mm/hr)	I (mm/hr)	l (mm/hr)	I (mm/hr)	l (mm/hr)
Raintali Data from NIWA. Hirds 4	4, RCP6, 2081-210	3.57	3.57	3.57	3.57	3.20	3.20	3.20
Use an appropriate event for the situatic Flow rate	e of surface water	Oc (m^3/sec)	Oc (m^3/sec)	Oc (m^3/sec)	Oc (m^3/sec)	Oc (m^3/sec)	Oc (m^3/sec)	Oc (m^3/sec)
	o or ourrade mater	0.001	0.000	0.000	0.000	0.000	0.000	0.000
		Qc (L/sec)	Qc (L/sec)	Qc (L/sec)	Qc (L/sec)	Qc (L/sec)	Qc (L/sec)	Qc (L/sec)
		0.64	0.00	0.00	0.00	0.00	0.00	0.00
						Total impormoable or	cluded fron	Total no change exc
Total included in attenuation sys	tem calc	Qa (m^3/sec)	Qa (L/sec)			attenuation system c	ollection	attenuation system c
post	 development flor 	V 0.000	0.29			Obv (m^3/sec)	Oby (L/sec)	Oby (m^3/sec)
						0.000	0.00	0.000
						0.000	0.00	0.000
Post - Pre development fil	w	Oton (m^3/sec)	Oton (L/sec)					I
. ost – i te development in		0.0003	0.20					
		0.0000	0.20					
Total post development file								
Developed flow	+ undeveloped flo	W. Oott (m/2/coc)	Oott (1 (coo)					
Developed llow	· undeveloped lio	w Gau (111'3/880)	wan (L/Sec)					
0 to 10min		0.0006	0.04					
U IO IUMIN								

1b	Rational meth	nod	48hr			
Total catchment pre-development flow						
	Roof	Concrete &	Metaled area	Other		
	& decks	smooth seal	Or rough seal	Impervious	Vegetation	Bush
Total area. Area (m ²	1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)
674.9	0 0	0	0	0	674.9	0
Runoff coefficer	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)
Use "C" values from FNDC TR55 chart	FALSE	FALSE	FALSE	FALSE	0.53	FALSE
Generally do not use slope adjustment Ci factor if using TR5	5 0.96	0.96	0.89	0.8	0.53	0.59
Rainfall intensit	l (mm/hr)	I (mm/hr)	I (mm/hr)	I (mm/hr)	l (mm/hr)	I (mm/hr)
Rainfall Data from NIWA. Hirds 4, RCP6, 2081-21	00 3.20	3.20	3.20	3.20	3.20	3.20
Use an appropiate event for the situation						
Flow rate of surface wate	Qc (m^3/sec)					
	0.000	0.000	0.000	0.000	0.000	0.000
Catchment area pre – development flow	Qcap (m^3/sec)	Qcap (L/sec)				
	0.0003	0.32				
1						

312	10	191	08

							312.1019108
	Round	Square		Calculation (initial) Total tank area	Calculation (initial) Total tank volume	Calculation (initial) usable height hmax (m)	Calculation (final) Additional area m ²
Select 1 for type of tank/area, 0 for other	1	0		m^2	m^3	0.65	Nil
Estimate storage volume			Tank radius	33.13	21.54	OK	Total area
Adjust to match max Vstored	Num. Of tanks		r (m)		Initial calculation	ОК	Same as initial
Round area	3		1.875	33.13	hstor max.	0.658	Final volume
	Num. Of tanks	Width	Length	m^2	Vstored max.	21.79	Same as initial
Square/rectangular area				0.00	Vstored min.	0.101	
					0.05 to3.5% left @ 48hr	0.47	
Short tube, 0.76	Orifice type "u"	g				ОК	Same as initial
Thin sharp, 0.62	0.76	9.8067		Gr	aph, 24hr Vstored 2520m	0.282	Not used
				Max.10% left	@ 24hr from initial calc.	1.29	1.29
					or add extra volume		
	48hr	24hr	12hr	6hr	2hr	60	30
Pre – development flow	C20	L20	U20	AD20	AM20	AV20	BE20
3 of developed area	0.00035	0.00060	0.00099	0.00157	0.00302	0.00437	0.00609
							Slope factor
Pre-development flow matches 2hr 40min. Intensity	Qp (m^3/sec)	Qp (L/sec)		Qin max.			adjustment at
Uses (80min.crossover O126) as a source value	0.0026	2.6129		0.00930		48hr program	Min.crossover
Do not change	OK					Min.crossover	Chart point (min.)
For calculation purposes this section changes	Dia check	Dia	Area	Qout 1520 (L/sec)	Qout (m^3/sec)	Chart point (min.)	0.91
the dia only and thereby the area	0.0351	0.03501	0.0010	2.552	0.00255	1520	peak flow
The information is not used for anything else		35.01		0		1520	Chart point (max.)
	If additional storag	e is required use the	original/inital orifice	e size and calc. height			0.15

culate maximum storage volume						For period 2081-2100	Ahipara
Chart intensity	Chart intensity	Storm duration-	Storm duration-	Attenuation calc. tot	aCatchment pre-devel.	CC (RCP6) Intensity.	Current(0 deg)
hr values	accumulated	THR	Event data, TMINS	Direct to Atten.	plus orifice flow out	Post-devel I, (mm/hr)	Pre-devi I, (mm/hr
steps used	minute steps	(hr)	mins	Qa (L/sec)	Qtin (L/sec)	10 yr	10 yr
48	720	12.00	720	0.29	0.50	3.57	3.2
24	1080	6.00	360	0.5	1.0	6.16	5.45
12	1260	3.00	180	0.9	1.5	10.3	8.94
6	1380	2.00	120	1.4	2.3	16.7	14.2
2	1410	0.50	30	2.9	4.0	32.9	27.3
1	1425	0.25	15	4.3	5.5	47.9	39.5
30	1430	0.08	5	5.9	7.3	66.8	55.1
20	1435	0.08	5	7.1	8.4	79.9	65.8
10	1440	0.08	5	9.3	10.6	105	86.8
10	1445	0.08	5	9.3	10.6	105	86.8
20	1450	0.08	5	7.1	9.0	79.9	65.8
30	1455	0.08	5	5.9	8.0	66.8	55.1
	1470	0.25	15	4.3	6.5	47.9	39.5
2	1500	0.50	30	2.9	5.3	32.9	27.3
6	1620	2.00	120	1.4	3.6	16.7	14.2
12	1800	3.00	180	0.9	2.2	10.3	8.94
24	2160	6.00	360	0.5	1.0	6.16	5.45
48	2880	12.00	720	0.3	0.5	3.57	3.2
				Qout max.	Qout max.	Vstored max.	
Catchment flow Qpat (cell MAX(P109:P130)	Qcap max.	Qp (m^3/sec)	Qp (L/sec)	(m^3/sec)	(L/sec)	Vol. stored, (m ³)	_
Catchment flow = orifice flow out + catchment	4.770	0.0048	4.8	0.00480	4.80	21.799	
						ОК	
For calculation purposes this section changes	Dia check	Dia	Area			ÖK	
the dia only and thereby the area	0.0474	0.04731	0.0018				
		470.04	1				

1	10	0	١	T

1	Rational m	ethod	48hr				_
Pre – Development water flow							
	Roof	Concrete &	Metaled area	Other			
(Original water flow)	& decks	smooth seal	Or rough seal	Impervious	Vegetation	Bush	
Total area. Area (m^2) 1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)	
6	0 0	0	0	0	674.9	0	
Runoff coe	fficent Ci (coefficie	nt) Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	
Use "C" values from FNDC TR55	chart FALSE	FALSE	FALSE	FALSE	0.65	FALSE	
Generally do not use slope adjustment Ci factor if using TR5	5 0.96	0.96	0.89	0.65	0.65	0.59	
Rainfall int	ensity I (mm/hr)	l (mm/hr)	l (mm/hr)	l (mm/hr)	l (mm/hr)	l (mm/br)	
Rainfall Data from NIWA. Hirds 4, RCP6, 2081-2100	4.96	4.96	4.96	4.96	4.96	4.96	
Flow rate of surface	water Qc (m^3/sec	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	
	0.000	0.000	0.000	0.000	0.001	0.000	
Pre – developmer	nt flow Qp (m^3/sec)	Qp (L/sec)					
of develope	d area 0.0006	0.60	J				
	Any area who	ere there is a chang	e		Pre-development are	a where there is	Any area where there
Post – Development water flow	in the imper	miablity values			a change in imperme	able surfaces but	to the impermiablity v
					not collected in aten	uation system	
	Roof	Concrete &	Tanks		Concrete &	Metaled area	Metaled area
	& decks	smooth seal	Or rough seal	Vegetation	smooth seal	or vegetation	or seal
I otal area. Area (m^2) 1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)	7 (m^2)
C	574.90 574.9				U	Ű	U
OK OK	Ci (coefficie	ent) Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)
Use "C" values from FNDC TR55	chart 0.96	FALSE	FALSE	FALSE	0.2	0.3	FALSE
Generally do not use slope adjustment Ci factor if using TR5	0.96	0.96	0.9	0.65	"C" value difference be	etween Pre & Pos	0.96
Delefell interes					Maximum value 0.2 (at th	e moment	16 83
Rainfall Data from NIWA Hirds 4 RCP6 2081-210	5 57	I (mm/nr)	I (mm/nr)	I (mm/nr)	1 (mm/nr)	1 (mm/nr)	I (mm/nr)
Use an appropriate event for the situatic	0.01	0.07	0.07	0.01	4.00	4.55	4.00
Flow rate of surface	water Qc (m^3/sec) Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)
	0.001	0.000	0.000	0.000	0.000	0.000	0.000
		A 44 A	A 44 A		0.04		
	QC (L/SEC)	QC (L/SEC)	QC (L/SEC)	QC (L/SEC)	0.00	QC (L/SEC)	0.00
Total included in attenuation system calc	Qa (m^3/sec	Qa (L/sec)			Total impermeable ex attenuation system of	cluded fron	Total no change, exclu attenuation system ca
post – developme	ent flow 0.000	0.40			Qby (m^3/sec)	Qby (L/sec)	Qby (m^3/sec)
					0.000	0.00	0.000
Post – Pre development flow	Qtpp (m^3/sec 0.0004	c) Qtpp (L/sec) 0.40					I
Total post development flow			1				
Developed flow + undevelop	oed flow Qatt (m^3/sec) Qatt (L/sec)					
	0.0010	1.00	1				
0 to 10min]				

10	Rational meth	ou	4011			
Total catchment pre-development flow	Roof	Concrete &	Metaled area	Other		
	& decks	smooth seal	Or rough seal	Impervious	Vegetation	Bush
Total area. Area (m ²)	1 (m^2)	2 (m^2)	3 (m^2)	4 (m^2)	5 (m^2)	6 (m^2)
674.90	0	0	0	0	674.9	0
D						
Runon coencen	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	Ci (coefficient)	CI (coefficient)	Ci (coefficient)
Use "C" values from FNDC TR55 chart	FALSE	FALSE	FALSE	FALSE	0.65	FALSE
Generally do not use slope adjustment Ci factor if using TR55	0.96	0.96	0.89	0.8	0.65	0.59
Rainfall intensity	I (mm/hr)	I (mm/hr)	I (mm/hr)	l (mm/hr)	I (mm/hr)	l (mm/hr)
Rainfall Data from NIWA. Hirds 4, RCP6, 2081-2100	4.96	4.96	4.96	4.96	4.96	4.96
Use an appropiate event for the situation						
Flow rate of surface water	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)	Qc (m^3/sec)
	0.000	0.000	0.000	0.000	0.001	0.000
Catchment area pre – development flow	Qcap (m ^A 3/sec) 0.0006	Qcap (L/sec) 0.60]			
	Total catchment pre-development flow Total area. Area (m*2) E74.90 Runoff coefficen Use "C" values from FNDC TR56 chart Generally do not use slope adjustment CI factor if using TR55 Rainfall Data from NIWA. Hirds 4, RCP6, 2081-2100 Use an appropiate event for the situation Flow rate of surface wate Catchment area pre – development flow	Total catchment pre-development flow Roof Total area. Area (m*2) 1 (m*2) 0 674.90 0 Runoff coefficen Use "C" values from FNDC TRS5 chart FALSE Generally do not use slope adjustment CI factor if using TR55 0.86 Rainfall Data from NWA. Hirds 4, RCP6, 2081-2100 4.96 Use an appropriate event for the situation Flow rate of surface wate Catchment area pre – development flow 0.000	Total catchment pre-development flow Concrete & & deck & deck & deck & mooth seal Total area. Area (m*2) (m*2) Concrete & smooth seal 1(m*2) 2 (m*2) 674.90 0 Runoff coefficen Generally do not use slope adjustment Ci factor if using TRS5 Rainfail not use slope adjustment Ci factor if using TRS5 Rainfail intensity FALSE Coccm*2 (m*2) Use "C" values from FNDC TRS5 chart Rainfail intensity Use "C" values from FNDC TRS5 chart Generally do not use slope adjustment Ci factor if using TRS5 Que (m*2) Use an appropiate event for the situation Flow rate of surface wate Occ(m*3/mec) Occ(m*3/mec) <	Total catchment pre-development flow Record in the colspan="2">Record in the colspan="2" Record in the colspan="2"	Total catchment pre-development flow Nord Nord <th>Total catchment pre-development flow Nord Nord</th>	Total catchment pre-development flow Nord Nord

2							
						Calculation (initial)	Calculation (final)
				Calculation (initial)	Calculation (initial)	usable height	Additional area
	Round	Square		Total tank area	Total tank volume	hmax (m)	m^2
Select 1 for type of tank/area, 0 for other	1	0	1	m^2	m^3	1.25	Nil
Estimate storage volume		-	Tank radius	22.09	27.61	OK	Total area
Adjust to match max Vstored	Num. Of tanks		r (m)		Initial calculation	OK	Same as initial
Round area	2		1.875	22.09	hstor max.	1.236	Final volume
	Num. Of tanks	Width	Length	m^2	Vstored max.	27.30	Same as initial
Square/rectangular area				0.00	Vstored min.	0.103	
					0.05 to3.5% left @ 48hr	0.38	
Short tube, 0.76	Orifice type "u"	g	1			OK	Same as initial
Thin sharp, 0.62	0.76	9.8067		Gr	aph, 24hr Vstored 2520m	0.285	Not used
			-	Max.10% left	@ 24hr from initial calc.	1.04	1.04
					or add extra volume		
	48hr	24hr	12hr	6hr	2hr	60	30
Pre – development flow	C20	L20	U20	AD20	AM20	AV20	BE20
3 of developed area	0.00060	0.00102	0.00168	0.00264	0.00508	0.00732	0.01019
							Slope factor
Pre-development flow matches 2hr 40min. Intensity	Qp (m^3/sec)	Qp (L/sec)		Qin max.			adjustment at
Uses (80min.crossover O126) as a source value	0.0040	4.0205		0.01283		48hr program	Min.crossover
Do not change	OK					Min.crossover	Chart point (min.)
For calculation purposes this section changes	Dia check	Dia	Area	Qout 1520 (L/sec)	Qout (m^3/sec)	Chart point (min.)	0.91
the dia only and thereby the area	0.0369	0.03688	0.0011	3.823	0.00382	1520	peak flow
The information is not used for anything else		36.88		0		1520	Chart point (max.)
	If additional storage	e is required use the	original/inital orifice	e size and calc. height			0.15

4							
Calculate maximum storage volume						For period 2081-2100	Kaitaia
Chart intensity	Chart intensity	Storm duration-	Storm duration-	Attenuation calc. tot	Catchment pre-devel	CC (RCP6) Intensity. Cur	rent(0 dea)
hr values	accumulated	THR	Event data, TMINS	SDirect to Atten.	plus orifice flow out	Post-devel I. (mm/hr)	Pre-devi I. (mm/hr)
steps used	minute steps	(hr)	mins	Qa (L/sec)	 Qtin (L/sec)	100 yr	100 vr
48	720	12.00	720	0.40	0.85	5.57	4.96
24	1080	6.00	360	0.7	1.6	9.59	8.41
12	1260	3.00	180	1.2	2.6	16	13.8
6	1380	2.00	120	2.0	3.9	25.8	21.7
2	1410	0.50	30	4.0	7.0	50.6	41.7
1	1425	0.25	15	5.9	9.7	73.4	60.1
30	1430	0.08	5	8.2	12.9	102	83.6
20	1435	0.08	5	9.8	15.0	122	99.7
10	1440	0.08	5	12.8	19.0	160	131
10	1445	0.08	5	12.8	19.0	160	131
20	1450	0.08	5	9.8	15.9	122	99.7
30	1455	0.08	5	8.2	14.0	102	83.6
	1470	0.25	15	5.9	11.3	73.4	60.1
2	1500	0.50	30	4.0	9.0	50.6	41.7
6	1620	2.00	120	2.0	5.7	25.8	21.7
12	1800	3.00	180	1.2	3.3	16	13.8
24	2160	6.00	360	0.7	1.6	9.59	8.41
48	2880	12.00	720	0.4	0.9	5.57	4.96
				Qout max.	Qout max.	Vstored max.	
Catchment flow Qpat (cell MAX(P109:P130)	Qcap max.	Qp (m^3/sec)	Qp (L/sec)	(m^3/sec)	(L/sec)	Vol. stored, (m^3)	
Catchment flow = orifice flow out + catchment	10.000	0.0100	10.0	0.00994	9.94	27.284	
pre-development flow						ÖK	
For calculation purposes this section changes	Dia check	Dia	Area	1		OK OK	l
the dia only and thereby the area	0.0582	0.05817	0.0027	J			
ine information is not used for anything else		58.17	aiza far final daoi	an			
		Use uns ornice	SIZE IOI INAI GESI	igii			

This will have further development at a later stage, including a 2yr orifice size & position (3 orifices in total).

	Fixed value	100yr	10yr	
u	g	Desc hrs	Desc hrs	
0.76	9.8067	0.055	1.8	Adjust until orifices are closest to the values of tab 10yr & 100yr "cell D136"

Change orifice factor "u" to suit, short tube 0.76 & thin sharp edge 0.62

Or10yr Size of lower orifice (fitted 150mm above bottom/base if tank for attenuation only)

Storage height at which Ortop is fitted 0.60 Height from overflow outlet invert to Ortop invert

p Size of second orifice (fitted at ho10yr above lower orifice Or10yr)

Attenuation System Parameters

	Orifice diameter	Orifice invert location		
ARI 10	47 mm	1250 mm below overflow invert		
ARI 100	58 mm	600 mm below overflow invert		
Tank Size	3 x	25,000 litres @ 3.75mDia.		
ARI 10		21,794.3 litres		
ARI 100		27,304.5 litres		
Reuse		47,695.5 litres		